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1. Introduction

In theoretical computer science, in particular in auto-
mated theorem proving and term rewriting, a binary re-
lation → on a set of terms is called a rewrite relation if 
it is closed both under context application (the “replace-
ment” or “monotonicity” property) and under substitutions 
(the “fully invariant property”), see Definition 1 in [2] and 
Definition 4.2.2 in [1]. The inverse, the symmetric closure, 
the reflexive closure, and the transitive closure of a rewrite 
relation are again rewrite relations [2]. The intersection 
of two rewrite relations is again a rewrite relation, and 
rewrite relations form a complete lattice with respect to 
intersection, see Section 2.2 in [2]. A term rewrite sys-
tem (TRS for short) R induces a rewrite relation →R [1]. 
A number of problems to characterise the intersection of 
various closures of rewrite relations induced by two TRSs 
have been considered in the literature [4,6,7].

By the above discussion, the intersection of the reflexive 
transitive closures of two rewrite relations induced by TRSs 
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is also a rewrite relation. Hence it is natural to ask whether 
this intersection is equal to the reflexive transitive closure 
of a rewrite relation induced by a TRS. We show that the 
following problems are undecidable:
INSTANCE: Two convergent linear TRSs R and S on the 
same ranked alphabet �.
QUESTION: Does there exist a TRS U on � such that →+

R ∩
→+

S = →+
U ?

QUESTION: Does there exist a TRS U on � such that →∗
R ∩

→∗
S = →∗

U ?
Here →+

R and →∗
R denote the transitive closure and the 

reflexive transitive closure of →R , respectively.

2. Preliminaries

We present a review of the notions, notations and pre-
liminary results used in the paper.

2.1. Abstract reduction systems

An abstract reduction system is a pair (A, →), where 
the reduction → is a binary relation on the set A. ←, ↔, 
→∗ , and ↔∗ denote the inverse, the symmetric closure, 
the reflexive transitive closure, and the reflexive transitive 
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symmetric closure of the binary relation →, respectively. 
x ∈ A is irreducible if there is no y such that x → y. y ∈ A
is a normal form of x ∈ A if x →∗ y and y is irreducible. If 
x ∈ A has a unique normal form, then it is denoted by x ↓. 
y ∈ A is a descendant of x ∈ A if x →∗ y.

The reduction → is called

• confluent if for all x, y1, y2 ∈ A, if y1 ←∗ x →∗ y2, 
then y1 →∗ z ←∗ y2 for some z ∈ A;

• terminating if there is no infinite chain x0 → x1 →
x2 → ·· · ;

• convergent if it is both confluent and terminating.

2.2. Terms

N stands for the set of nonnegative integers, and [1, n]
stands for the set {1, . . . , n} for each n ∈N. A ranked alpha-
bet is a finite set � in which every symbol has a unique 
rank in N. For each m ∈ N, �m denotes the set of all el-
ements of � which have rank m. The elements of �0 are 
called constants.

For a set of variables Y and a ranked alphabet �, T�(Y )

denotes the set of �-terms (or �-trees) over Y , and idT�(Y )

denotes the identity relation on T�(Y ). T�(∅) is written 
as T� . A term t ∈ T� is called a ground term. A term 
t ∈ T�(Y ) is linear if each variable in Y occurs at most 
once in t . We specify a countable set X = {x1, x2, . . .} of 
variables which will be kept fixed in this paper. Moreover, 
we put Xm = {x1, . . . , xm } for m ∈N. Hence X0 = ∅.

For a term t ∈ T�(X), the height height(t) and the set 
of positions P O S(t) ⊆ N∗ of t are defined by tree induc-
tion.

• If t ∈ �0 ∪ X , then height(t) = 0 and P O S(t) = {λ}.
• If t = f (t1, . . . , tm) with f ∈ �m, m > 0, then

height(t) = 1 + max{height(ti) | 1 ≤ i ≤ m} and
P O S(t) = {iα | 1 ≤ i ≤ m, α ∈ P O S(ti)}.

For each t ∈ T�(X) and α ∈ P O S(t), we introduce 
the subterm t/α ∈ T�(X) of t at α and define the label 
lab(t, α) ∈ � ∪ X in t at α as follows:

• for t ∈ �0 ∪ X , t/λ = t and lab(t, λ) = t;
• for t = f (t1, . . . , tm) with m ≥ 1 and f ∈ �m , if α =

λ then t/α = t and lab(t, α) = f , otherwise, if α =
iβ with i ∈ [1, m], then t/α = ti/β and lab(t, α) =
lab(ti, β).

For t ∈ T� , α ∈ P O S(t), and r ∈ T� , we define t[α ← r] ∈
T� as follows.

• If α = λ, then t[α ← r] = r.
• If α = iβ , for some i ∈ N and β ∈ N∗ , then t =

f (t1, . . . , tm) with f ∈ �m and i ∈ [1, m]. Then t[α ←
r] = f (t1, . . . , ti−1, ti[β ← r], ti+1, . . . , tm).

For a term t ∈ T�(X), var(t) denotes the set of vari-
ables occurring in t , i.e. var(t) = {xi | there exists α ∈
P O S(t) such that lab(t, α) = xi}.

For trees t ∈ T�(Xm), and t1, . . . , tm ∈ T�(X), we de-
note by t[t1, . . . , tm] the tree obtained by substituting ti

for every occurrence of xi in t , for each i ∈ [1, m]. We 
say that t ∈ T�(Xm) is a pattern of s ∈ T�(X), if there are 
t1, . . . , tm ∈ T�(X) such that s = t[t1, . . . , tm].

For each n ∈ N, an n-context over � is a term u ∈
T�(Xn) with exactly one occurrence of the variable xi for 
each i ∈ [1, n]. C�,n denotes the set of n-contexts over �. 
Note that C�,0 = T� . Let C� = ⋃

n∈N C�,n . We call a map-
ping ω : � → N a weight function. The weight function ω
can be extended to a function ω : C� → N as follows: let 
ω(u) = ∑

f ∈� ω( f ) · |u| f , where |u| f denotes the number 
of occurrences of symbol f in u. Thus, ω(u) simply adds 
up the weight of all occurrences of symbols of � in u.

An alphabet � is any finite nonempty set, �∗ stands 
for the set of words over �, and λ denotes the empty 
word. For an alphabet �, we consider the ranked alpha-
bet � ∪ {#}, where # /∈ �. Here each element of � is a 
unary symbol and # is a constant. Then we consider a tree 
in T�∪{#} as a word over the alphabet � ∪ #. For example, 
let � = {a, b}. Then the tree a(b(b(a(#)))) is written as the 
word abba#. Conversely, for each word w ∈ �∗ , the word 
w# over the alphabet � ∪ {#} can be considered as a tree 
over the ranked alphabet � ∪ {#}. For example, the word 
aab# can be considered as the tree a(a(b(#))).

For an alphabet �, we also consider the alphabets � =
{a | a ∈ �} and � = {a | a ∈ �}. The alphabets �, �, and 
� are pairwise disjoint. For each word w ∈ �∗ , the word 
w ∈ �

∗
is defined as follows.

• If w = λ, then w = λ.
• If w = az for some a ∈ � and z ∈ �∗ , then w = a z.

For each word w ∈ �∗ , we define the word w ∈ �∗ in a 
similar way to w .

2.3. Term rewriting systems

Let � be a ranked alphabet. Then a term rewriting sys-
tem (TRS) R on � is a finite subset of (T�(X) − X) ×T�(X). 
For an element (l, r) of a TRS R , var(r) is a subset of var(l), 
and l /∈ X . Elements (l, r) of R are called rules and are de-
noted by l → r. The TRS R is linear if for each rule l → r, 
both l and r are linear. A TRS R is context replacing if for 
each rule l → r of R , l and r are n-contexts for some n ∈N.

Let R be a TRS over �. For any terms s, t ∈ T�(X), po-
sition α ∈ P O S(s), and rule l → r in R with l, r ∈ T�(Xm), 
m ∈ N, we say that s rewrites to t applying the rule 
l → r at α, and denote this by s →l→r,α t if there are 
s1, . . . , sm ∈ T�(X) such that s/α = l[s1, . . . , sm] and t =
s[α ← r[s1, . . . , sm]]. Here we also say that s rewrites to 
t and denote this by s→Rt .

We say that a TRS R is confluent, terminating, or con-
vergent, if →R has the corresponding property. For a term 
t ∈ T� , R∗(t) = {p | t→∗

R p } is the set of descendants of t , 
and R+(t) = {p | t→+

R p } is the set of proper descendants 
of t .

Proposition 2.1. Let TRS R be a context replacing TRS such that 
for each rule l → r in R, ω(l) > ω(r). Then R is terminating.

Proof. By direct inspection of the definitions. �
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