Information Processing Letters 134 (2018) 57-61

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Are unique subgraphs not easier to find? N

Check for
updates

Mirostaw Kowaluk?, Andrzej Lingas "*

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
b Department of Computer Science, Lund University, Lund, Sweden

ARTICLE INFO ABSTRACT

Article history:

Received 11 January 2017

Received in revised form 15 January 2018
Accepted 6 February 2018

Available online 8 February 2018
Communicated by P. Wong

Consider a pattern graph H with | edges, and a host graph G which may contain several
occurrences of H. In [15], we claimed that the time complexity of the problems of finding
an occurrence of H (if any) in G as well as that of the decision version of the problem
are within a multiplicative factor O@®) of the time complexity for the corresponding
problem, where the host graph is guaranteed to contain at most one occurrence of a
subgraph isomorphic to H, and the notation 0() suppresses polylogarithmic in n factors.
We show a counterexample to this too strong claim and correct it by providing an
5((l(d -1+ 2)1) bound on the multiplicative factor instead, where d is the maximum
number of occurrences of H that can share the same edge in the input host graph. We
provide also an analogous correction in the induced case when occurrences of induced
subgraphs isomorphic to H are sought.

Keywords:

Algorithms

Subgraph isomorphism
Induced subgraph isomorphism
Unique subgraph occurrence

Time complexity

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The problems of detecting, finding, counting and list-
ing subgraphs or induced subgraphs of a host graph that
are isomorphic to a given pattern graph have been widely
studied. They are important both in their own rights
as well as subproblems for other problems in algorith-
mics. Their recent applications include among other things
bioinformatics [1,5], social networks [19], and automatic
design [24].

The aforementioned problems are generally termed
subgraph isomorphism and induced subgraph isomorphism
problems, respectively. Their decision, finding, counting
and even enumeration versions have been extensively in-
vestigated in the literature. In particular, the decision ver-
sions include as special cases such well-known NP-hard
problems as the independent set, clique, Hamiltonian cy-
cle and path problems [10]. For arbitrary graphs, they are

* Corresponding author.
E-mail addresses: kowaluk@mimuw.edu.pl (M. Kowaluk),
Andrzej.Lingas@cs.Ith.se (A. Lingas).

https://doi.org/10.1016/.ipl.2018.02.010
0020-0190/© 2018 Elsevier B.V. All rights reserved.

known to admit polynomial-time solutions only in the case
when the pattern graph is of fixed size.

For a given pattern graph H on k vertices and an arbi-
trary host graph on n vertices, the detection, finding and
counting versions of subgraph isomorphism and induced
subgraph isomorphism admit algorithms running in time
0 (n®¥/31.Tk=1)/31.Tk/31) " where w(p, q,r) is the exponent
of fast arithmetic matrix multiplication of an n? x n% ma-
trix by an n9 x n" matrix (cf. [7,11,13,17]).

The subgraph isomorphism and induced subgraph iso-
morphism for pattern graphs of fixed size are known to
have more efficient algorithmic solutions when restricted
to special graph classes, e.g., sparse graphs [6,7,23] or in
particular planar graphs [8].

Already a restriction of the pattern graph of fixed size
to a special graph class, e.g., graphs of bounded treewidth,
cycles, graphs having a relatively large independent set
leads to faster algorithms (cf. [3,4,12,13,16,18,22,23]).

In this paper, following [15], we address the question of
whether or not the guarantee that the host graph contains
at most one occurrence of the pattern graph (up to auto-
morphisms) can yield more efficient solutions to the sub-

https://doi.org/10.1016/j.ipl.2018.02.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:kowaluk@mimuw.edu.pl
mailto:Andrzej.Lingas@cs.lth.se
https://doi.org/10.1016/j.ipl.2018.02.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2018.02.010&domain=pdf

58 M. Kowaluk, A. Lingas / Information Processing Letters 134 (2018) 57-61

graph isomorphism problem with pattern graph of fixed
size, than those in the general case where the number of
occurrences of the pattern graph is unrestricted.

There are several known examples of combinatorial
problems admitting more efficient algorithms under the
assumption of solution uniqueness.

For instance, Gabow et al. [9] show that detecting if
a given graph has a unique perfect matching, and find-
ing one if it exists, can be done in time O(mlog*n). In
a weighted setting, a variation of this problem is to de-
cide whether a given perfect maximum-weight matching
in a graph is unique. The latter problem has applications
in computational biology, namely, in RNA structure predic-
tion.

Next, unique lowest common ancestors in directed
acyclic graphs can be found more efficiently than those
non-necessarily unique [14]. On the other hand, it is well
known that the SAT problem restricted to instances having
at most one satisfying assignment is as hard as SAT [21].

In [15], we believed that we provided a negative answer
to the addressed question. Namely, we claimed that the
subgraph (or, induced subgraph, respectively) isomorphism
problem with pattern graph of fixed size efficiently reduces
to its restricted case where the host graph is guaranteed
to have at most one occurrence of the pattern graph. More
precisely, we stated that if the pattern graph has | edges
then the time complexity of the subgraph isomorphism is
within a multiplicative factor O(l3) of that for the afore-
mentioned restricted case. The reductions were random-
ized and they could be regarded as a generalization of the
reduction of the problem of finding witnesses of Boolean
matrix product to the problem of finding unique witnesses
of Boolean matrix product [2,20].

In this paper, we show a counterexample to the afore-
mentioned reductions from [15]. Instead, we prove a
weaker claim under the additional assumption that the
number of occurrences of the pattern graph with [edges
that can share the same edge in the input host graph is
bounded by d. We show then that the time complexity of
the subgraph 1somorphlsm is within a multiplicative factor
O((l(d —1)+2))) of that for the restricted case, where the
host graph is guaranteed to have at most one occurrence
of the pattern graph. We provide also an analogous correc-
tion of the too strong claim in [15] in the induced case,
when occurrences of induced subgraphs isomorphic to the
pattern graph are sought.

Our paper is structured as follows. In the next section,
we present the counterexample to the claim from [15]
and prove the aforementioned weaker claim for standard
subgraph isomorphism whereas in Section 3, we prove
an analogous weaker claim for induced subgraph isomor-
phism. We conclude with Final remarks.

2. Additional assumptions are needed

Let H be a pattern graph with [edges and q vertices. In
Theorems 2.2, 3.2 in [15], we expressed the time complex-
ities of the problems of finding or detecting a copy, or an
induced copy, of H in a host graph G in terms of those for
the restricted variants, where the host graph is guaranteed
to contain at most one copy of H. It turns out that an addi-

tional assumption is needed for Theorems 2.2, 3.2 to hold.
Namely, the multi-occurrences of the pattern graph H in
G have to be mutually edge-disjoint in the standard case
and vertex-disjoint in the induced case in order to achieve
the efficient reduction of finding or detecting a copy of H
in G to the corresponding problem for subgraphs of the in-
put graph containing at most one copy of H. The reduction
is given by Algorithm 1 in the standard case and by Algo-
rithm 2 in the induced case in [15]. (Below, we present a
slight generalization of Algorithm 1, termed Algorithm 1/,
where the probability of edge deletion is just set to 1 —p

instead of 1 — l] as in [15].)
2T

Algorithm 1

Input: A host graph G with n vertices and a pattern
graph H with [edges.

Output: An occurrence of H in G or the answer “no”
(the answer “yes” or “no” in the decision version).
while F has at least | edges do:

1.

2. Delete each edge in F independently with proba-
bility 1 —p

Output “no H”

If the aforementioned additional assumption is not ful-
filled, then for example, the input graph G on n vertices
in Algorithm 1 could contain n — 2 copies of a triangle
with a common base. Note that the removal of the base
edge annihilates all the triangle copies. In order to prune
G to a subgraph F containing exactly one triangle copy, in
a single run of Algorithm 1, the expected number of edge
deletion iterations would need to be (logn) and during
each of the iterations, the base edge would have to survive.
The probability of such a run of Algorithm 1 would be not
greater than = for some constant €. Hence, a polylogarith-
mic number of runs of Algorithm 1 very likely would not
be sufficient to find or detect a triangle in such a G. This
counterexample works also in the induced case.

The too strong claims in [15] are caused by an erro-
neous probabilistic analysis in Lemma 2.1 for the standard
case and Lemma 3.1 for the induced case. First, we provide
a correct equivalent of Lemma 2.1 relying on the additional
assumption on the maximum number of occurrences of
the pattern graph in the host graph that can share the
same edge. Recall that the probability of edge deletion in
Algorithm 1’ is set to 1 — p.

Download English Version:

https://daneshyari.com/en/article/6874202

Download Persian Version:

https://daneshyari.com/article/6874202

Daneshyari.com

https://daneshyari.com/en/article/6874202
https://daneshyari.com/article/6874202
https://daneshyari.com

