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The classical Shannon’s entropy possesses a natural definition of conditional entropy and a 
useful chain rule whose application is ubiquitous in information theory. On the contrary, 
for the case of min-entropy both: the definition of conditional min-entropy and the 
formulation of chain rule are still subject of discussion. This paper goes along this line 
of research and proposes new candidate for chain rule for conditional min-entropy as 
defined in Dodis et al. paper [1]. We derive our quasi chain rule based on so-called spoiling 
knowledge idea.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Since the beginning of the formal treatment of infor-
mation theory most works have heavily relied on different 
flavours of the notion of entropy. Depending on the con-
text, those were used to measure compressibility, unpre-
dictability or uncertainty of outcomes of random processes. 
In his seminal work, Shannon applied the simplest com-
pressibility notion of entropy, defined for a random vari-
able X by the formula

H(X)
def= Ex log2

1

Pr(X = x)
=

∑
x

−Pr(X = x) · log2 Pr(X = x),
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to prove that in a perfectly secure symmetric key encryp-
tion scheme the length of the secret key is necessarily as 
large as the length of the message. The version of entropy 
which turned out to be most useful in the area of cryptog-
raphy is the min-entropy, defined by the formula

H∞(X)
def= − log2(max

x
Pr(X = x)),

which quantitatively reflects the difficulty of guessing a 
random sample of a random variable. More precisely, the 
number 2−H∞(X) is the maximal probability of guessing 
the value of a random sample of X .

1.1. Conditional entropy

The present paper deals with the conditional counter-
parts of the aforementioned entropy notions. Shannon’s 
compressibility entropy possesses a natural generalization 
to its conditional version H(X |Y ), which satisfies the for-
mula H((X, Y )) = H(X |Y ) + H(Y ) expressing an intuitive 
interpretation stating that the information contained in the 
pair (X, Y ) consists of the information in Y extended by 
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the conditional information in X given Y . Dodis et al. [1]
provided an analogous notion for min-entropy. Namely, for 
two random variables X, Y the conditional min-entropy 
H̃∞(X |Y ) is given by the formula

H̃∞(X |Y )
def= − log2

(
Ey2−H∞(X |Y =y)

)
.

This definition turns out to preserve the natural in-
terpretation of min-entropy as the maximal probability of 
success in guessing X given Y , that is, for any algorithm A
we have

Pr(A(Y ) = X) = Ey Pr (A(y) = (X |{Y = y}))
≤ Ey2−H∞(X |Y =y) = 2−H̃∞(X |Y ).

Regrettably, the above definition possesses serious draw-
backs illustrated by the following example.

Example 1.1. Let X = (X1, X2) ∈ ({0, 1}n)2 be a ran-
dom variable distributed uniformly over “the cross”, that 
is, a set {0, 1}n × e ∪ e × {0, 1}n for some fixed e ∈
{0, 1}n . Note that, we have H∞((X1, X2)) = − log2

1
2n+1−1

∈
[n, n + 1] and H∞(Xi) = − log2

2n

2n+1−1
< 1 and there-

fore, the sum property H∞((X1, X2)) ≤ H∞(X1) + H∞(X2)

does not hold without any further assumptions or con-
ditions. Moreover, H̃∞(X2|X1) < H∞(X2) and therefore 
H̃∞(X2|X1) + H∞(X1) < 2 which consequently means that 
the most natural chain rule does not hold either.

However, among many other things the authors of [1]
prove the following result.

Lemma 1.2 (Lemma 2.2 in [1]). Let X, Y , Z be random vari-
ables. Then

(a) For any δ > 0, the conditional entropy H∞(X |Y = y) is 
at least (H̃∞(X |Y ) − log2(1/δ)) with probability at least 
(1 − δ) over the random choice of y ← Y .

(b) If Y has at most 2λ possible values, then

H̃∞(X |(Y , Z)) ≥ H̃∞((X, Y )|Z) − λ ≥ H̃∞(X |Z) − λ.

In particular,

H̃∞(X |Y ) ≥ H∞((X, Y )) − λ ≥ H∞(X) − λ.

The item Lemma 1.2(b) can be treated as a simplistic 
form of a chain rule for min-entropy. However, its signif-
icant weakness is that the inequality does not depend on 
the random properties of Y but its actual size λ. We illus-
trate this by another simple example.

Example 1.3 (Two blocks almost half entropy). Let X, Y
be two random variables distributed over {0, 1}n with 
joint distribution of min-entropy H∞((X, Y )) = n. Then, 
Lemma 1.2(b) gives us a trivial estimate H̃∞(X |Y ) ≥
H∞((X, Y )) − |Y | = 0 regardless of the distribution of Y .

Nevertheless, if we condition (X1, X2) given in Exam-
ple 1.1 with a random variable Z defined by the formula

Z = i ⇐⇒ Xi = e,

(e is defined inside Example 1.1) then the variable X3−i

has conditional min-entropy H∞(X3−i |Z = i) = n. There-
fore, there exists a certain additional “knowledge” Z which 
allows us to extract almost the whole min-entropy from 
the pair (X1, X2). Namely, the event

H∞(X1|Z = z) + H∞(X2|Z = z) ≥ H∞(X1, X2) − 1

holds with probability 1 over the random choice of z ← Z . 
This suggests that the way to obtain the full version of 
a chain rule is the additional conditioning. This is exactly 
what we do in this paper: for a pair of random variables 
and ε > 0 we exhibit an random variable Zε (depending 
solely on Y ) such that

Pr
y←Y

(H∞(X |Y = y) + H∞(Y |Zε) ≤ (1 − ε) · H∞((X, Y )))

is negligible.

Our main technical results are Lemma 3.1 (bivariate case) 
and Lemma 3.5 (general case). Similar approach was used 
in certain different applications and is classically called 
spoiling knowledge.

1.2. Previous research and the statement of the main result

Previous research concerning chain rule is not restricted 
to the paper [1] mentioned above. For instance, the au-
thors of [2] and [3] prove that random (sufficiently large) 
subtuple of some set of variables with high min-entropy 
must preserve some significant amount of this entropy. 
Our result can be viewed as a generalization of this fact. 
More precisely, from our reasoning we get that some spe-
cific (not random) subtuple preserves some significant por-
tion of min-entropy (see Corollary 3.5). Moreover in [3]
the authors try to deal with the problem of chain rule 
for min-entropy but need to make big effort to get some 
complicated workaround since they do not have any quasi 
chain rule for min-entropy in hand. They show a simplified 
version of their result and give a short brief proof based on 
chain rule for classical Shannon entropy. (Different exam-
ples of various “workarounds” may be also found in [4–6]). 
Another important previous result is the following lemma 
[7, Lemma A.1], which we state in the form from [8].

Lemma 1.4 (Lemma 4.2 (Min-Entropy-Splitting Lemma) in [8]). 
Let ε ≥ 0 and let X0, X1 be random variables (over possibly 
different alphabets) with Hε∞(X0 X1) ≥ α. Then, there exists a 
binary random variable C over {0, 1} such that Hε∞(X1−C C) ≥
α/2.

This is a very interesting result that shows that it 
is possible to extract partial min-entropy from a pair of 
variables. However, the authors justify high min-entropy 
of just one variable from the pair. In our main result 
(Lemma 3.1) we get significantly more, dealing with both
variables at once. More precisely, we prove the following
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