Information Processing Letters 133 (2018) 10-15

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Check for
updates

A note on hardness of diameter approximation

1

Karl Bringmann?, Sebastian Krinninger >*:

4 Max Planck Institute for Informatics, Saarland Informatics Campus, Campus E1 4, 66123 Saarbriicken, Germany
b University of Salzburg, Department of Computer Sciences, Jakob-Haringer-StrafSe 2, 5020 Salzburg, Austria

ARTICLE INFO ABSTRACT

Article history:

Received 12 May 2017

Received in revised form 21 December 2017
Accepted 29 December 2017

Available online 3 January 2018
Communicated by B. Doerr

We revisit the hardness of approximating the diameter of a network. In the CONGEST
model of distributed computing, €(n) rounds are necessary to compute the diameter
(Frischknecht et al., 2012 [2]), where (-) hides polylogarithmic factors. Abboud et al.
(2016) [3] extended this result to sparse graphs and, at a more fine-grained level, showed
that, for any integer 1 < £ < polylog(n), distinguishing between networks of diameter 4¢+2
and 6¢ + 1 requires (n) rounds. We slightly tighten this result by showing that even
distinguishing between diameter 2¢ + 1 and 3¢ + 1 requires Q(n) rounds. The reduction
of Abboud et al. is inspired by recent conditional lower bounds in the RAM model, where
the orthogonal vectors problem plays a pivotal role. In our new lower bound, we make
the connection to orthogonal vectors explicit, leading to a conceptually more streamlined
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1. Introduction

In distributed computing, the diameter of a network is
arguably the single most important quantity one wishes to
compute. In the CONGEST model [1], where in each round
every vertex can send to each of its neighbors a message
of size O(logn), it is known that Q(n) rounds are neces-
sary to compute the diameter [2] even in sparse graphs [3],
where n is the number of vertices. With this negative re-
sult in mind, it is natural that the focus has shifted to-
wards approximating the diameter. In this note, we revisit
hardness of computing a diameter approximation in the
CONGEST model from a fine-grained perspective.

The current fastest approximation algorithm [4], which
is inspired by a corresponding RAM model algorithm [5],
takes O(y/nlogn + D) rounds and computes a %-approxi—
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mation of the diameter, ie., an estimate D such that
L%DJ < D < D, where D is the true diameter of the net-
work. In terms of lower bounds, Abboud, Censor-Hillel,
and Khoury [3] showed that €2(n) rounds are necessary
to compute a (% — €)-approximation of the diameter for
any constant 0 < € < % At a more fine-grained level, they
show that, for any integer 1 < ¢ < polylog(n), at least (n)
rounds are necessary to decide whether the network has
diameter 4¢ + 2 or 6¢ + 1, thus ruling out any “relaxed”
notions of (% — &)-approximation that additionally allow
small additive error. We tighten this result by showing
that, for any integer ¢ > 1, at least $(n) rounds are nec-
essary to distinguish between diameter 2¢£ 4+ 1 and 3¢+ 1,
and more generally between diameter 2¢ 4+ q and 3¢ +q
for any ¢,q > 1.

The reduction of Abboud et al. [3] is inspired by re-
cent work on conditional lower bounds in the RAM model,
where the orthogonal vectors problem plays a pivotal role. In
our new lower bound, we make the connection between
diameter approximation and orthogonal vectors explicit:
we consider a communication complexity version of or-
thogonal vectors that we show to be hard unconditionally
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by a reduction from set disjointness and then devise a
reduction from orthogonal vectors to diameter approxima-
tion.

Additionally, our approach has implications in the
RAM model. There, the Strong Exponential Time Hypothesis
(SETH) [6] states that for every § > O there is an in-
teger k > 3 such that k-SAT admits no algorithm with
running time O(2(~9N) and the Orthogonal Vectors Hy-
pothesis (OVH) states that there is no algorithm to decide
whether a given set of d-dimensional vectors of length n
contains an orthogonal pair in time O (n?~% poly(d)) for
any constant § > 0. It is well-known that SETH implies
OVH [7]. Prior to our work, the situation in the RAM
model was as follows. In their seminal paper [5], Roditty
and Vassilevska Williams showed that, for any constants
€ >0 and § > O there is no algorithm that computes a
(% — €)-approximation of the diameter and runs in time
0(m?~?%), unless the Strong Exponential Time Hypothesis
(SETH) fails. In particular, they show that no algorithm can
decide whether a given graph has diameter 2 or 3 in time
0(m?~%), unless the Strong Exponential Time Hypothesis
(SETH) fails. The hardness of 2 vs. 3 is already implied by
the weaker Orthogonal Vectors Hypothesis (OVH), which
in turn is implied by SETH [7] and was popularized after
the paper of Roditty and Vassilevska Williams appeared.
It has then been shown by Chechik et al. [8] that, for
any integer 1 < ¢ <n°®, there is no algorithm that dis-
tinguishes between diameter 3(¢ 4+ 1) and 4(¢ + 1) with
running time O(m?~°%) for some constant § > 0, unless
SETH fails. Finally, Cairo, Grossi, and Rizzi [9] showed that,
for any integer 1 < £ <n°®, there is no algorithm that dis-
tinguishes between diameter 2¢ and 3¢ with running time
0(m%~%) for some constant § > 0, unless SETH fails. Our
reduction reconstructs the result of Cairo et al. under the
weaker hardness assumption OVH, yielding again a more
streamlined chain of reductions.

2. Reduction from set disjointness to orthogonal vectors

Set disjointness is a problem in communication com-
plexity between two players, called Alice and Bob, in
which Alice is given an n-dimensional bit vector x and
Bob is given an n-dimensional bit vector y and the goal
for Alice and Bob is to find out whether there is some
index k at which both vectors contain a 1, i.e., such that
x[k] = y[k] =1 (meaning the sets represented by x and y
are not disjoint). The relevant measure in communication
complexity is the number of bits exchanged by Alice and
Bob in any protocol that Alice and Bob follow to deter-
mine the solution. A classic result [10,11] states that any
such protocol requires Alice and Bob to exchange €2(n) bits
to solve set disjointness.

In the orthogonal vectors problem, Alice is given a set
of bit vectors L ={l1,...,I;} and Bob is given a set of bit
vectors R = {rq,...,ry}, and the goal for them is to find
out if there is a pair of orthogonal vectors | e L and rj € R
(i.e., such that I;[k] =0 or r;[k] =0 in each dimension k).
We give a reduction from set disjointness to orthogonal
vectors.

Theorem 2.1. Any b-bit protocol for the orthogonal vectors
problem in which Alice and Bob each hold n vectors of dimension
d = 2[logn] + 3, gives a b-bit protocol for the set disjointness
problem where Alice and Bob each hold an n-dimensional bit
vector.

Proof. We show that, without any communication, Alice
and Bob can transform a set disjointness instance (x,y)
with n-dimensional bit vectors into an orthogonal vectors
instance (L, R) such that x and y are not disjoint if and
only if (L, R) contains an orthogonal pair. For every integer
1<i<n,lets; denote the binary representation of i with
[logn] bits. For every bit b, let b be the result of ‘flipping’
bit b, i.e, 1=0, and 0 = 1. Similarly, for a bit vector b, let
b be the result of flipping each bit of b. For every 1 <i <n,
let l; be the vector obtained from concatenating x[i], x[i],
X[i], sj, and s;. For every 1 < j <n, let r; be the vector
obtained from concatenating y[i], y[i], y¥[i], Si, and s;.

We now claim that the vectors x and y are not disjoint
if and only if (L, R) contains an orthogonal pair. If the vec-
tors x and y are not disjoint, then there is some i such
that x[i] = y[i] = 1. Clearly, s; and s; are orthogonal and,
as the vectors (x[i], x[i], x[i]) and (y[i], y[i], y[i]) are equal
to (1,0,0) and (0, 1, 0), respectively, they are also orthog-
onal. It follows that [; and r; are orthogonal.

Now assume that (L, R) contains an orthogonal pair
li e L and r; € R. We first show that i = j. Suppose for the
sake of contradiction that i ## j. Then the binary represen-
tations s; and s; differ in at least one bit, say s;[k] # s;[k].
If si[k] =0 and sj[k] =1, then s; and s; are not orthog-
onal and thus [; and r; are not orthogonal, contradicting
the assumption. If sij[k] =1 and s;[k] =0, then s; and §;
are not orthogonal and thus [; and r; are not orthogonal,
contradicting the assumption. It follows that i = j and thus
the vectors (x[i], x[i], x[i]) and (y[i], y[i], y[i]) are orthog-
onal. Orthogonality of x[i] and y[i] rules out x[i]=1 and
y[i] = 0, orthogonality of X[i] and y[i] rules out x[i] =0
and y[i] =1, and orthogonality of x[i] and y[i] rules out
x[i] =0 and y[i] = 0. It follows that x[i] = y[i] = 1, making
x and y not disjoint. O

The hardness of set disjointness now directly transfers
to orthogonal vectors.

Corollary 2.2. Any protocol solving the orthogonal vectors
problem with n vectors of dimension d = 2[logn] + 3, requires
Alice and Bob to exchange 2(n) bits.

3. Reduction from orthogonal vectors to diameter

We now establish hardness of distinguishing between
networks of diameter 2¢ +q and 3¢ + q for any € > 1
and q > 1 in the CONGEST model and for any ¢ > 1 and
q > 0 in the RAM model, respectively. To unify the cases
of odd and even ¢, we introduce an additional parameter
p € {0,1} and change the task to distinguishing between
networks of diameter 4¢’ — 2p +q and 6¢' — 3p +q for in-
tegers £’ > 1, ¢ >0, and p € {0, 1}. This covers the original
question: if ¢ is even, then set ¢/ :=¢/2 and p :=0 and if
£ is odd, then set ¢/ :=[£/2] and p :=1.
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