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We revisit the hardness of approximating the diameter of a network. In the CONGEST 
model of distributed computing, �̃(n) rounds are necessary to compute the diameter 
(Frischknecht et al., 2012 [2]), where �̃(·) hides polylogarithmic factors. Abboud et al. 
(2016) [3] extended this result to sparse graphs and, at a more fine-grained level, showed 
that, for any integer 1 ≤ � ≤ polylog(n), distinguishing between networks of diameter 4� +2
and 6� + 1 requires �̃(n) rounds. We slightly tighten this result by showing that even 
distinguishing between diameter 2� + 1 and 3� + 1 requires �̃(n) rounds. The reduction 
of Abboud et al. is inspired by recent conditional lower bounds in the RAM model, where 
the orthogonal vectors problem plays a pivotal role. In our new lower bound, we make 
the connection to orthogonal vectors explicit, leading to a conceptually more streamlined 
exposition.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In distributed computing, the diameter of a network is 
arguably the single most important quantity one wishes to 
compute. In the CONGEST model [1], where in each round 
every vertex can send to each of its neighbors a message 
of size O (log n), it is known that �̃(n) rounds are neces-
sary to compute the diameter [2] even in sparse graphs [3], 
where n is the number of vertices. With this negative re-
sult in mind, it is natural that the focus has shifted to-
wards approximating the diameter. In this note, we revisit 
hardness of computing a diameter approximation in the 
CONGEST model from a fine-grained perspective.

The current fastest approximation algorithm [4], which 
is inspired by a corresponding RAM model algorithm [5], 
takes O (

√
n log n + D) rounds and computes a 3

2 -approxi-
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mation of the diameter, i.e., an estimate D̂ such that 
� 2

3 D� ≤ D̂ ≤ D , where D is the true diameter of the net-
work. In terms of lower bounds, Abboud, Censor-Hillel, 
and Khoury [3] showed that �̃(n) rounds are necessary 
to compute a ( 3

2 − ε)-approximation of the diameter for 
any constant 0 < ε < 1

2 . At a more fine-grained level, they 
show that, for any integer 1 ≤ � ≤ polylog(n), at least �̃(n)

rounds are necessary to decide whether the network has 
diameter 4� + 2 or 6� + 1, thus ruling out any “relaxed” 
notions of ( 3

2 − ε)-approximation that additionally allow 
small additive error. We tighten this result by showing 
that, for any integer � ≥ 1, at least �̃(n) rounds are nec-
essary to distinguish between diameter 2� + 1 and 3� + 1, 
and more generally between diameter 2� + q and 3� + q
for any �, q ≥ 1.

The reduction of Abboud et al. [3] is inspired by re-
cent work on conditional lower bounds in the RAM model, 
where the orthogonal vectors problem plays a pivotal role. In 
our new lower bound, we make the connection between 
diameter approximation and orthogonal vectors explicit: 
we consider a communication complexity version of or-
thogonal vectors that we show to be hard unconditionally
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by a reduction from set disjointness and then devise a 
reduction from orthogonal vectors to diameter approxima-
tion.

Additionally, our approach has implications in the 
RAM model. There, the Strong Exponential Time Hypothesis 
(SETH) [6] states that for every δ > 0 there is an in-
teger k ≥ 3 such that k-SAT admits no algorithm with 
running time O (2(1−δ)N ) and the Orthogonal Vectors Hy-
pothesis (OVH) states that there is no algorithm to decide 
whether a given set of d-dimensional vectors of length n
contains an orthogonal pair in time O (n2−δ poly(d)) for 
any constant δ > 0. It is well-known that SETH implies 
OVH [7]. Prior to our work, the situation in the RAM 
model was as follows. In their seminal paper [5], Roditty 
and Vassilevska Williams showed that, for any constants 
ε > 0 and δ > 0 there is no algorithm that computes a 
( 3

2 − ε)-approximation of the diameter and runs in time 
O (m2−δ), unless the Strong Exponential Time Hypothesis 
(SETH) fails. In particular, they show that no algorithm can 
decide whether a given graph has diameter 2 or 3 in time 
O (m2−δ), unless the Strong Exponential Time Hypothesis 
(SETH) fails. The hardness of 2 vs. 3 is already implied by 
the weaker Orthogonal Vectors Hypothesis (OVH), which 
in turn is implied by SETH [7] and was popularized after 
the paper of Roditty and Vassilevska Williams appeared. 
It has then been shown by Chechik et al. [8] that, for 
any integer 1 ≤ � ≤ no(1) , there is no algorithm that dis-
tinguishes between diameter 3(� + 1) and 4(� + 1) with 
running time O (m2−δ) for some constant δ > 0, unless 
SETH fails. Finally, Cairo, Grossi, and Rizzi [9] showed that, 
for any integer 1 ≤ � ≤ no(1) , there is no algorithm that dis-
tinguishes between diameter 2� and 3� with running time 
O (m2−δ) for some constant δ > 0, unless SETH fails. Our 
reduction reconstructs the result of Cairo et al. under the 
weaker hardness assumption OVH, yielding again a more 
streamlined chain of reductions.

2. Reduction from set disjointness to orthogonal vectors

Set disjointness is a problem in communication com-
plexity between two players, called Alice and Bob, in 
which Alice is given an n-dimensional bit vector x and 
Bob is given an n-dimensional bit vector y and the goal 
for Alice and Bob is to find out whether there is some 
index k at which both vectors contain a 1, i.e., such that 
x[k] = y[k] = 1 (meaning the sets represented by x and y
are not disjoint). The relevant measure in communication 
complexity is the number of bits exchanged by Alice and 
Bob in any protocol that Alice and Bob follow to deter-
mine the solution. A classic result [10,11] states that any 
such protocol requires Alice and Bob to exchange �(n) bits 
to solve set disjointness.

In the orthogonal vectors problem, Alice is given a set 
of bit vectors L = {l1, . . . , ln} and Bob is given a set of bit 
vectors R = {r1, . . . , rn}, and the goal for them is to find 
out if there is a pair of orthogonal vectors li ∈ L and r j ∈ R
(i.e., such that li[k] = 0 or r j[k] = 0 in each dimension k). 
We give a reduction from set disjointness to orthogonal 
vectors.

Theorem 2.1. Any b-bit protocol for the orthogonal vectors 
problem in which Alice and Bob each hold n vectors of dimension 
d = 2�log n	 + 3, gives a b-bit protocol for the set disjointness 
problem where Alice and Bob each hold an n-dimensional bit 
vector.

Proof. We show that, without any communication, Alice 
and Bob can transform a set disjointness instance 〈x, y〉
with n-dimensional bit vectors into an orthogonal vectors 
instance 〈L, R〉 such that x and y are not disjoint if and 
only if 〈L, R〉 contains an orthogonal pair. For every integer 
1 ≤ i ≤ n, let si denote the binary representation of i with 
�log n	 bits. For every bit b, let b̄ be the result of ‘flipping’ 
bit b, i.e., 1̄ = 0, and 0̄ = 1. Similarly, for a bit vector b, let 
b̄ be the result of flipping each bit of b. For every 1 ≤ i ≤ n, 
let li be the vector obtained from concatenating x[i], x̄[i], 
x̄[i], si , and s̄i . For every 1 ≤ j ≤ n, let ri be the vector 
obtained from concatenating ȳ[i], y[i], ȳ[i], s̄i , and si .

We now claim that the vectors x and y are not disjoint 
if and only if 〈L, R〉 contains an orthogonal pair. If the vec-
tors x and y are not disjoint, then there is some i such 
that x[i] = y[i] = 1. Clearly, si and s̄i are orthogonal and, 
as the vectors (x[i], ̄x[i], ̄x[i]) and ( ȳ[i], y[i], ȳ[i]) are equal 
to (1, 0, 0) and (0, 1, 0), respectively, they are also orthog-
onal. It follows that li and ri are orthogonal.

Now assume that 〈L, R〉 contains an orthogonal pair 
li ∈ L and r j ∈ R . We first show that i = j. Suppose for the 
sake of contradiction that i �= j. Then the binary represen-
tations si and s j differ in at least one bit, say si[k] �= s j[k]. 
If si[k] = 0 and s j[k] = 1, then s̄i and s j are not orthog-
onal and thus li and r j are not orthogonal, contradicting 
the assumption. If si[k] = 1 and s j[k] = 0, then si and s̄ j
are not orthogonal and thus li and r j are not orthogonal, 
contradicting the assumption. It follows that i = j and thus 
the vectors (x[i], ̄x[i], ̄x[i]) and ( ȳ[i], y[i], ȳ[i]) are orthog-
onal. Orthogonality of x[i] and ȳ[i] rules out x[i] = 1 and 
y[i] = 0, orthogonality of x̄[i] and y[i] rules out x[i] = 0
and y[i] = 1, and orthogonality of x̄[i] and ȳ[i] rules out 
x[i] = 0 and y[i] = 0. It follows that x[i] = y[i] = 1, making 
x and y not disjoint. �

The hardness of set disjointness now directly transfers 
to orthogonal vectors.

Corollary 2.2. Any protocol solving the orthogonal vectors 
problem with n vectors of dimension d = 2�log n	 + 3, requires 
Alice and Bob to exchange �(n) bits.

3. Reduction from orthogonal vectors to diameter

We now establish hardness of distinguishing between 
networks of diameter 2� + q and 3� + q for any � ≥ 1
and q ≥ 1 in the CONGEST model and for any � ≥ 1 and 
q ≥ 0 in the RAM model, respectively. To unify the cases 
of odd and even �, we introduce an additional parameter 
p ∈ {0, 1} and change the task to distinguishing between 
networks of diameter 4�′ − 2p + q and 6�′ − 3p + q for in-
tegers �′ ≥ 1, q ≥ 0, and p ∈ {0, 1}. This covers the original 
question: if � is even, then set �′ := �/2 and p := 0 and if 
� is odd, then set �′ := ��/2	 and p := 1.
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