Information Processing Letters 133 (2018) 21-25

www.elsevier.com/locate/ipl

Contents lists available at ScienceDirect

Information Processing Letters

Compositional and local livelock analysis for CSP

M.S. Conserva Filho®*, M.V.M. Oliveira¢, A. Sampaiob, Ana Cavalcanti €

2 Universidade Federal do Rio Grande do Norte, Brazil
b Universidade Federal de Pernambuco, Brazil
€ University of York, UK

Check for
updates

ARTICLE INFO

ABSTRACT

Article history:

Received 7 December 2016

Received in revised form 10 August 2017
Accepted 30 December 2017

Available online 12 January 2018
Communicated by ].L. Fiadeiro

The success of component-based techniques for software construction relies on trust in
the emergent behaviour of the compositions. Here, we propose an efficient correct-by-
construction technique for building livelock-free CSP models. Its verification conditions
are based on a local analysis of the shortest event sequences (traces) that represent a
recursive behaviour in the CSP model. This affords significant gains in performance in

model checking. We evaluate our strategy based on models of the Milner's scheduler and

Keywords:

Process algebra
Divergence

Model checking
Components
Performance evaluation

the dining philosophers.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Compositional modelling and verification approaches
are popular [4], but rely on trust in the emergent be-
haviour of the compositions. Process algebras are among
the adopted formalisms. CSP [6,10] is a well established
process algebra to model and verify concurrent systems.
CSP offers consolidated semantic models that support a
wide range of verifications, including livelock freedom.
A system is livelock free (divergence free) if there exists
no state from which it internally computes through an in-
finite sequence of internal actions [10].

The main approach to prove divergence freedom re-
quires a global analysis of the system. This strategy is auto-
mated for CSP, for instance, by FDR4 [5]. One alternative is
a static analysis of the syntactic structure of a process [9].
For that, syntactic rules are proposed either to classify CSP
systems as livelock-free or to report an inconclusive result.
This approach is implemented in SLAP [9].

* Corresponding author.
E-mail address: madiel@ppgsc.ufrn.br (M.S. Conserva Filho).

https://doi.org/10.1016/j.ipl.2017.12.011
0020-0190/© 2018 Elsevier B.V. All rights reserved.

We present a technique based on a local analysis, in
which we can identify livelock situations when compo-
sitions are being performed, predicting, by construction,
global property based on known local properties of the
components [1]. Our strategy aims at reducing complexity
for verifying the absence of divergence, especially compar-
ing with the approach in [9]. We illustrate our technique
based on models of the Milner’s scheduler and the dining
philosophers, and show that it outperforms both FDR4 and
SLAP. In cases in which livelock freedom is not ensured,
we either identify the possibility of divergence or report
an inconclusive result. This incompleteness is the trade-off
for scalability.

The next section briefly describes our evaluation strat-
egy. Section 3 describes our technique, whose performance
is evaluated in Section 4.

2. Material and methods

The demonstration of the usefulness and efficiency of
our technique consists of a comparative analysis of three
different scenarios: (i) the traditional global analysis of
FDR4, (ii) the static livelock-analysis of SLAP, and (iii) our


https://doi.org/10.1016/j.ipl.2017.12.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:madiel@ppgsc.ufrn.br
https://doi.org/10.1016/j.ipl.2017.12.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.12.011&domain=pdf

22 M.S. Conserva Filho et al. / Information Processing Letters 133 (2018) 21-25

Inconclusive
Result

No

Linked Parallel
Verification

Livelock-free
Fig. 1. BPM model of the livelock analysis for linked parallel composition.

local livelock analysis, which is presented in the next sec-
tion. We have developed two case studies: the Milner’s
task scheduler [7], which can be modelled as a ring of cells
with pairwise synchronisation, and the dining philoso-
phers [10]. All CSP scripts used in the case studies can be
found at goo.gl/mAZWXq. We have used a server with 4
core AMD Phenom II, and 8 GB of RAM in a Ubuntu sys-
tem.

3. Theory

In CSP, when composing divergence-free processes, di-
vergent behaviour can arise from the use of hiding [10].
For a given CSP process P and a set of events X, the pro-
cess P\ X converts visible occurrences of events of P in X
into internal events. This transformation may yield an infi-
nite loop of internal events. For instance, P = (a — P)\{a}
is defined in terms of the prefix operator (—): it engages
in event a and then recurses, but it diverges because the
event a is hidden, hence, P indefinitely performs inter-
nal events without communicating with its environment.
If a process can engage in an unbroken sequence of events
from a set X, we must ensure that X cannot be hidden.

The hiding operator is also implicitly used in a particu-
lar kind of parallel composition: the linked parallel compo-
sition P[a <> b]Q, in which P and Q proceed in parallel
with communications on a in P becoming hidden syn-
chronisations with communications on b in Q. Commu-
nications on other channels are interleaved: they do not
require synchronisation. In general, multiple channels may
be linked as, for example, in P[a <> b, c <> d]Q.

We propose a constructive approach which guarantees
that, for livelock-free processes that obey certain condi-
tions and are composed pairwisely using linked parallel,
the resulting composition is livelock-free. To achieve scala-
bility, we perform an optimisation (which we refer in Fig. 1
as OP) that prunes the alternative behaviours of the re-
sulting composition with interleaved events, choosing only
one of the alternatives.

Our approach is based on three main verifications,
which are systematically applied (see Fig. 1): the Simple
Verification (SV) ensures livelock freedom based on an in-
dividual analysis of the processes involved in the compo-
sition. The absence of livelock is guaranteed if one of the
processes is livelock-free after hiding its linking events lo-
cally. If that fails, the Complex Verification (CV) checks if
the linked processes are able to communicate in an infi-
nite loop via the linked (internal) events. If they are, we
have a livelock. Otherwise, if the optimisation (OP) has not
been applied, the composition is livelock-free. If, however,
the optimisation has been applied, our strategy guarantees

livelock freedom only if we have a Safe Multiple Compo-
sition (SMCV), which does not link events on a many-to-
many fashion. Otherwise, the interleaved events pruned by
our optimisation may lead the system to divergence. Our
strategy is, therefore, inconclusive in such cases. In what
follows, we present the basic definitions used in our tech-
nique and formally describe these local verifications.

3.1. Basic definitions

Our method considers developments that use livelock-
free basic processes, which can be described using most
of the CSP main operators, including conditionals, tail and
mutual recursions. We also consider parameters. Further
information on basic processes can be found in [3]. Paral-
lelism (and hiding) is achieved by composing processes (ei-
ther basic or resulting from previous compositions) using
the linked parallel composition.

The first step of our technique is to identify the in-
finite behaviours of a given process. For that, we use a
pair (tr,mip) of sequences (traces). Its first element is a
trace that leads a given process to a recursive behaviour.
The second one is a minimal interaction pattern of a given
process, that is, the shortest finite sequence of events that
represents the recursion itself. The set XIP(P) contains all
possible pairs (tr, mip) of the process P.

To exemplify our method, we introduce a classical con-
current system, the dining philosophers [10]. It consists of
philosophers sitting at a round table that need to acquire
a pair of shared forks before eating. The behaviour of each
philosopher and each fork is modelled as a process P; or F;
for values i from a set ID of philosopher and fork identi-
fiers. We consider two philosophers and two forks and use
ID ={1,2}. A channel fk:ID.ID.EV, where EV = {U, D}
defines events fk.i.j.e that indicate that the fork i is put
up or down, depending on whether e is U or D, by the
philosopher j. The fork processes are as follows.

F1 = fk1.1.U > fk.1.1.D —> F; O fk.1.2.U —
fk1.2.D > F

Fy = fk2.2.U — fk2.2.D — F,0 fk.2.1.U —
fk2.1.0 > F,

Initially, a fork can be picked up by either philosopher.
Once it is picked up, it can only be put down by the same
philosopher. Accordingly, the process Fi offers a determin-
istic choice (O): it engages either on the events fk.1.1.U
or fk.1.2.U. The prefix operator (—) states that the cor-
responding down event (D) is offered afterwards. The
process recurses after the down event. Hence, XIP(Fy) =
{((),(fk.1.1.U, fk.1.1.D)), ({),(fk.1.2.U, fk.1.2.D))}. In this
example, as Fq returns to its initial state, tr is the empty
trace (()).

Similarly, pfk.j.i.e records the action e on fork j by
philosopher i. The channel wk : ID defines events wk.i, in-
dicating that the philosopher i has just woken up. Finally,
the channel If : ID.LF, where LF = {T, E} defines events
If .i.l, indicating that the philosopher i is either thinking
(T) or eating (E).


http://goo.gl/mAZWXq

Download English Version:

https://daneshyari.com/en/article/6874211

Download Persian Version:

https://daneshyari.com/article/6874211

Daneshyari.com


https://daneshyari.com/en/article/6874211
https://daneshyari.com/article/6874211
https://daneshyari.com

