
Information Processing Letters 133 (2018) 49–55

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Aiding exploratory testing with pruned GUI models

Jacinto Reis ∗, Alexandre Mota ∗

Centro de Informática, Universidade Federal de Pernambuco, Av. Jornalista Aníbal Fernandes, s/n, Cidade Universitária, CEP 50.740-560,
Recife, PE, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 July 2017
Received in revised form 21 November 2017
Accepted 23 January 2018
Available online 3 February 2018
Communicated by J.L. Fiadeiro

Keywords:
Software engineering
GUI testing
Static analysis
Exploratory testing
Change request

Exploratory testing is a kind of software testing approach that emphasizes tester’s expe-
rience to maximize the chances to find bugs within a specific time period. It is naturally 
a GUI-oriented testing activity for GUI-based systems. We propose aiding exploratory test-
ing by providing a GUI model of the region impacted by the most recent internal code 
changes. We create such a delimited GUI model by pruning an original GUI model, quickly 
built by static analysis. This pruned GUI model is result of a reachability analysis between 
GUI elements and internal source code changes. Only related GUI elements are preserved. 
To illustrate the idea, we consider five GUI applications found in public repositories with 
varying changes among them. We present experimental data concerning two executions 
of two exploratory testing sessions: one without using our proposal and another with our 
proposal. For both testers, our proposal showed coverage gain in experimental data.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, applications based on a graphical user in-
terface (GUI) are ubiquitous. Testing such applications are 
becoming harder, especially due to the huge state space 
(possible interactions). Exploratory testing [1] is seen as 
one of the most successful software testing approaches in 
this case because it is based on the freedom of experienced 
testers that try to exercise potentially problematic regions 
of a system very quickly using their expertise.

To improve an exploratory testing session, exploratory 
testing usually focuses on unstable test scenarios by man-
ually examining change requests (CRs) related to most re-
cent bug fixes and/or software improvements. However, in 
most cases, the information gathered from such reports 
may not be accurate enough to determine which interme-
diate GUI elements (for example, windows, buttons, and 
text fields) may be exercised to reach the affected GUI 

* Corresponding author.
E-mail addresses: jfsr@cin.ufpe.br (J. Reis), acm@cin.ufpe.br (A. Mota).

elements. This creates a gap between GUI elements and 
internally changed elements.

To reduce such a gap we employ Model-based GUI Test-
ing, which is a promising research field [2–4]. We provide 
a pruned GUI model (related to the changed regions) as an 
additional source of information to aid exploratory testing 
sessions. This pruned GUI model emerges by keeping only 
those GUI elements related to internally changed elements. 
In other words, a full GUI model of a system, created by 
static analysis, is filtered by using a transitive closure oper-
ation (or reachability analysis). As illustrated in Section 6, 
our experiments show that our proposed strategy brings 
promising results, increasing the covered region in all eval-
uations.

The main contributions of this paper are: (i) How to 
create a GUI model from Java/Swing source code using 
Soot,1 (ii) Soot patterns related to Swing, and (iii) Prun-
ing GUI model based on changed code.

1 A framework for analyzing and transforming Java and Android Appli-
cations – https :/ /sable .github .io /soot/.

https://doi.org/10.1016/j.ipl.2018.01.008
0020-0190/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ipl.2018.01.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:jfsr@cin.ufpe.br
mailto:acm@cin.ufpe.br
https://sable.github.io/soot/
https://doi.org/10.1016/j.ipl.2018.01.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2018.01.008&domain=pdf


50 J. Reis, A. Mota / Information Processing Letters 133 (2018) 49–55

Fig. 1. Book Manager application and its GUI model.

Fig. 2. Comparison between Java and Jimple code.

This paper is organized as follows. Section 2 presents 
our proposed GUI model. We show and explain source 
code patterns for Java/Swing in Section 3. Section 4 ex-
plains algorithms used to build GUI model. Section 5 de-
scribes how the changed code was reflected in pruned 
GUI model. In Section 6, we evaluate our proposed ap-
proach, besides discussing the obtained results. Finally, re-
lated works and conclusions are considered in Sections 7
and 8, respectively.

2. Background

This section introduces basic information about our 
proposed GUI Model (Section 2.1) and static analysis (Sec-
tion 2.2).

2.1. GUI model

In the literature, there are different ways for represent-
ing a GUI application in terms of a mathematical model. In 
our work, we build the GUI model in terms of small parts, 
such as: Component, Window and Event. In short, our GUI 
elements are described as follows:

• An Event (E) is just a set of actions, like “press a but-
ton”;

• A Component is either a Container or a Widget. We ab-
stract away from the internal details of Container’s and 
Widget’s.

Component ::= Widget | Container〈〈F Component〉〉
• A Window (W ) is a set of components, or formally 

W ⊆ F Component.

After showing the elements, we present the definition 
of the GUI Model.

Definition 1. A GUI Model G is a 4-tuple (W , E, SW , T R), 
such that:

1. W is a finite set of Window elements;
2. E is a finite set of Event elements;
3. SW is a set of starting windows (SW ⊆ W );
4. T R ⊆ W × E × W is a transition relation.

We exemplify our proposed GUI model using the simple 
application illustrated in Fig. 1a. Our model is represented 
by a directed graph (Fig. 1b). It illustrates our GUI Model 
obtained from a Book Manager app. Each displayed 
Window is represented as a node, where some of these 
windows are starting windows (BookManagerW indow
node in this example is a starting window). Event e1
expresses a click on the Add Book button. This action 
is available on main window (node w1), and after it 
is triggered it opens the Add Book dialog, captured by 
node w2. The events e3 and e4, which are exit events of 
this dialog window, represent the possibilities of clicking 
on buttons OK and Cancel, respectively. They are con-
nected to the main window because after they are fired, 
the dialog is closed and the focus returns to Book Man-
ager window (w1). The remaining event (e2) encodes the 
action of removing books. As it does not open another 
window, both source and target windows are the same 
(w1).

2.2. Static analysis using Soot

To build such a GUI Model, we perform a static anal-
ysis implemented using the Soot framework. This analysis 
deals with the Jimple [5] intermediate representation of 
the Java bytecode [6] of the application under analysis. 
Fig. 2a shows a Java snippet of a main method and List-
ing 2b shows its Jimple corresponding code.



Download English Version:

https://daneshyari.com/en/article/6874216

Download Persian Version:

https://daneshyari.com/article/6874216

Daneshyari.com

https://daneshyari.com/en/article/6874216
https://daneshyari.com/article/6874216
https://daneshyari.com

