
Information Processing Letters 132 (2018) 33–38

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Fast modular reduction and squaring in G F (2m)

L. Boppre Niehues a,∗, R. Custódio a, D. Panario b

a Department of Informatics and Statistics, Federal University of Santa Catarina, Brazil
b School of Mathematics and Statistics, Carleton University, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 November 2016
Received in revised form 13 October 2017
Accepted 11 December 2017
Available online 12 December 2017
Communicated by L. Viganò

Keywords:
Finite field
Number theory
Polynomial
Squaring
Cryptography

We present an efficient bit-parallel algorithm for squaring in G F (2m) using polynomial
basis. This algorithm achieves competitive efficiency while being aimed at any choice of
low-weight irreducible polynomial. For a large class of irreducible polynomials it is more
efficient than the previously best general squarer. In contrast, other efficient squarers often
require a change of basis or are suitable for only a small number of irreducible polynomials.
Additionally, we present a simple algorithm for modular reduction with equivalent cost to
the state of the art for general irreducible polynomials. This fast reduction is used in our
squaring method.

© 2017 Published by Elsevier B.V.

1. Introduction

Arithmetic in the finite field G F (2m) of 2m elements
(also denoted F2m) is fundamental for many important
cryptosystems such as ECC (Elliptic Curve Cryptography).
Such arithmetic is usually implemented by choosing an
irreducible polynomial f ∈ F2[x], deg(f) = m, perform-
ing operations and reducing modulo this polynomial. It
is common to have algorithms that implement arithmetic
operations using a particular class of irreducible polynomi-
als. This is because these algorithms are efficiently imple-
mented considering such class of irreducibles.

Arithmetic operations in G F (2m) usually consist of ad-
dition (which is equivalent to subtraction in characteris-
tic 2), multiplication (of which squaring is a special case)
and inverses. All these operations are used in ECC, making
any optimizations reflect directly on the speed of elliptic
curve arithmetic, raising the importance of choosing an ir-
reducible polynomial and associated algorithms. As exam-

* Corresponding author.
E-mail addresses: lucasboppre@inf.ufsc.br (L.B. Niehues),

ricardo.custodio@ufsc.br (R. Custódio), daniel@math.carleton.ca
(D. Panario).

ples, the classes of pentanomials xm + xn+2 + xn+1 + xn + 1,
x4s + x3s + x2s + xs + 1, xm + xm−r + xs + xr + 1 and
xm + xn+1 + xn + x + 1 are used in fast multipliers [1],
each with their own fast multiplication and reduction al-
gorithms.

However, the algorithms designed for irreducible poly-
nomials with specific exponents may contain internal
structures with an unclear impact on security of appli-
cations that use these algorithms. No attacks have been
demonstrated so far, but the security community has
seen evidence of standards containing back doors [2]
and cryptography failing due to fixed parameters [3]. In
light of these events there has been discussions for less
magic parameters and more randomness in the structures
used.

A related problem is that many classes of irreducible
polynomials contain too few elements. In ECC, for exam-
ple, many classes of polynomials often have no irreducible
polynomials for a desired degree. Furthermore, choosing a
class to speed up a specific operation may lead to less ef-
ficient algorithms for other operations used in the same
application.

We introduce a general algorithm for G F (2m) modular
reduction and an efficient squarer suitable for any low-

https://doi.org/10.1016/j.ipl.2017.12.002
0020-0190/© 2017 Published by Elsevier B.V.

https://doi.org/10.1016/j.ipl.2017.12.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:lucasboppre@inf.ufsc.br
mailto:ricardo.custodio@ufsc.br
mailto:daniel@math.carleton.ca
https://doi.org/10.1016/j.ipl.2017.12.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.12.002&domain=pdf

34 L.B. Niehues et al. / Information Processing Letters 132 (2018) 33–38

weight irreducible polynomial f . These algorithms oper-
ate on elements represented in polynomial basis, where
the coefficients are stored simply as an array of bits, and
operations are performed bitwise in a logic circuit. Such
algorithms are usually measured by the number of bit-
level XOR operations performed and their circuit delay (we
note that only XOR operations are required in these algo-
rithms). Previous works on this operation have been lim-
ited to certain classes of irreducible polynomials to achieve
competitive efficiency, fixing the weight (number of non-
zero elements) and the relationship among exponents. Al-
though our algorithms hold for any low-weight polyno-
mial, to achieve better circuit delay and be more com-
parable to other proposals, we focus on the pentanomial
case xm + xa + xb + xc + 1, m > a > b > c > 0, where
a ≤ �m/2�.

Our squarer has different costs depending on the ir-
reducible polynomial used. Applications requiring utmost
efficiency should choose an irreducible polynomial to min-
imize the global cost of operations. We observe there are
polynomials that minimize the number of XOR operations
and delay with our squarer; we show that low-weight
polynomials with this characteristic are abundant (see Ta-
ble 3 at Section 4). Additionally, our squarer can be used
for higher weight polynomials, with some performance
penalty.

The structure of this paper is as follows. In Section 2,
we present a general algorithm to perform modular re-
duction. This algorithm is generic and can be used with
any irreducible polynomial. In Section 3, we modify the
algorithm previously proposed to make it a squarer. This
strategy allowed us to propose a squarer algorithm of low
complexity. In Section 4, we compare our squarer with
previous methods for this operation. Section 5 shows how
the reduction and squaring algorithm can be generalized
for p-th power computation in characteristic p. We give
final conclusions in Section 6.

2. Modular reduction

Let G F (2m) be a finite field generated by an irreducible
polynomial f (x) = xm +r(x), where deg(r) < m. Some poly-
nomial basis operations performed on this field may re-
quire a reduction modulo f . This is a classical operation;
see for example [4, Chapter 2.3.5].

Let C(x) = ∑d
i=0 ci xi , d ≥ m, be the result of an op-

eration before the reduction mod f is executed. A sim-
ple method for reduction consists of iteratively computing
C(x) ← C(x) + ci xi−m f (x) for i = d, d − 1, . . . , m, where
each step i reduces the coefficient ci .

To reduce the number of operations we replace
ci xi−m f (x) with ci xi−mr(x) in the equation above, and then
compute the final result mod xm , which is a simple trun-
cation. This avoids one XOR per iteration because r has
one less coefficient than f . We consider the truncation to
have negligible cost. Algorithm 1 is a pseudocode repre-
sentation of these operations. The input consists of d + 1
signals (the input coefficients), which are modified using
XOR operations and returned as m signals. We describe the
details of this algorithm since it is a step in the construc-

Fig. 1. Example of circuit generated by 1 by fixing f (x) = x5 + x3 + x2 +
x + 1.

tion of the main contribution of this paper: our squarer
method.

Algorithm 1 General modular reduction for G F (2m).
Input: C = [c0, c1, c2, ..., cd], d ≥ m, f (x) = xm + r(x)
Output: C mod f
1: for i = d, d − 1, . . . , m do
2: for each exponent e of r do
3: C[i − m + e] ← C[i − m + e] ⊕ C[i]
4: end for
5: end for
6: return C[0], C[1], C[2], . . . , C[m − 1]

By fixing the irreducible polynomial in Algorithm 1,
the instructions can be mapped naturally to a circuit of
XOR gates. Fig. 1 shows an example of such circuit, for
f (x) = x5 + x3 + x2 + x + 1. The input coefficients are
given at the top, with each numbered row representing a
step of the algorithm. Note that all steps are in the form
C[i] ← C[i] ⊕ C[j] for some i, j. At the bottom of each col-
umn is the wire containing the result signal, along with
the total circuit delay for that wire, which measures the
number of XOR operations in its critical path (Tx). The total
delay of the circuit is therefore the largest of these individ-
ual delays.

Algorithm 1 uses (d − m + 1)wr XOR operations, where
wr is the weight of the polynomial r. If C is a product
of two polynomials of degree at most m − 1, then the
degree of C is at most d ≤ 2m − 2. It is common, in prac-
tical implementations, to fix d = 2m − 2. In this case, the
number of XOR operations to perform a modular reduction
for trinomials and pentanomials are 2m − 2 and 4m − 4,
respectively. The trinomial algorithm can be trivially mod-
ified to the equally spaced case, xm + xm/2 + 1, for m even,
where many operations cancel themselves out and result
in 1.5m − 1 XOR operations [5].

Download English Version:

https://daneshyari.com/en/article/6874226

Download Persian Version:

https://daneshyari.com/article/6874226

Daneshyari.com

https://daneshyari.com/en/article/6874226
https://daneshyari.com/article/6874226
https://daneshyari.com

