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We present an efficient bit-parallel algorithm for squaring in G F (2m) using polynomial 
basis. This algorithm achieves competitive efficiency while being aimed at any choice of 
low-weight irreducible polynomial. For a large class of irreducible polynomials it is more 
efficient than the previously best general squarer. In contrast, other efficient squarers often 
require a change of basis or are suitable for only a small number of irreducible polynomials. 
Additionally, we present a simple algorithm for modular reduction with equivalent cost to 
the state of the art for general irreducible polynomials. This fast reduction is used in our 
squaring method.

© 2017 Published by Elsevier B.V.

1. Introduction

Arithmetic in the finite field G F (2m) of 2m elements 
(also denoted F2m ) is fundamental for many important 
cryptosystems such as ECC (Elliptic Curve Cryptography). 
Such arithmetic is usually implemented by choosing an 
irreducible polynomial f ∈ F2[x], deg( f ) = m, perform-
ing operations and reducing modulo this polynomial. It 
is common to have algorithms that implement arithmetic 
operations using a particular class of irreducible polynomi-
als. This is because these algorithms are efficiently imple-
mented considering such class of irreducibles.

Arithmetic operations in G F (2m) usually consist of ad-
dition (which is equivalent to subtraction in characteris-
tic 2), multiplication (of which squaring is a special case) 
and inverses. All these operations are used in ECC, making 
any optimizations reflect directly on the speed of elliptic 
curve arithmetic, raising the importance of choosing an ir-
reducible polynomial and associated algorithms. As exam-
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ples, the classes of pentanomials xm + xn+2 + xn+1 + xn + 1, 
x4s + x3s + x2s + xs + 1, xm + xm−r + xs + xr + 1 and 
xm + xn+1 + xn + x + 1 are used in fast multipliers [1], 
each with their own fast multiplication and reduction al-
gorithms.

However, the algorithms designed for irreducible poly-
nomials with specific exponents may contain internal 
structures with an unclear impact on security of appli-
cations that use these algorithms. No attacks have been 
demonstrated so far, but the security community has 
seen evidence of standards containing back doors [2]
and cryptography failing due to fixed parameters [3]. In 
light of these events there has been discussions for less 
magic parameters and more randomness in the structures 
used.

A related problem is that many classes of irreducible 
polynomials contain too few elements. In ECC, for exam-
ple, many classes of polynomials often have no irreducible 
polynomials for a desired degree. Furthermore, choosing a 
class to speed up a specific operation may lead to less ef-
ficient algorithms for other operations used in the same 
application.

We introduce a general algorithm for G F (2m) modular 
reduction and an efficient squarer suitable for any low-
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weight irreducible polynomial f . These algorithms oper-
ate on elements represented in polynomial basis, where 
the coefficients are stored simply as an array of bits, and 
operations are performed bitwise in a logic circuit. Such 
algorithms are usually measured by the number of bit-
level XOR operations performed and their circuit delay (we 
note that only XOR operations are required in these algo-
rithms). Previous works on this operation have been lim-
ited to certain classes of irreducible polynomials to achieve 
competitive efficiency, fixing the weight (number of non-
zero elements) and the relationship among exponents. Al-
though our algorithms hold for any low-weight polyno-
mial, to achieve better circuit delay and be more com-
parable to other proposals, we focus on the pentanomial 
case xm + xa + xb + xc + 1, m > a > b > c > 0, where 
a ≤ �m/2�.

Our squarer has different costs depending on the ir-
reducible polynomial used. Applications requiring utmost 
efficiency should choose an irreducible polynomial to min-
imize the global cost of operations. We observe there are 
polynomials that minimize the number of XOR operations 
and delay with our squarer; we show that low-weight 
polynomials with this characteristic are abundant (see Ta-
ble 3 at Section 4). Additionally, our squarer can be used 
for higher weight polynomials, with some performance 
penalty.

The structure of this paper is as follows. In Section 2, 
we present a general algorithm to perform modular re-
duction. This algorithm is generic and can be used with 
any irreducible polynomial. In Section 3, we modify the 
algorithm previously proposed to make it a squarer. This 
strategy allowed us to propose a squarer algorithm of low 
complexity. In Section 4, we compare our squarer with 
previous methods for this operation. Section 5 shows how 
the reduction and squaring algorithm can be generalized 
for p-th power computation in characteristic p. We give 
final conclusions in Section 6.

2. Modular reduction

Let G F (2m) be a finite field generated by an irreducible 
polynomial f (x) = xm +r(x), where deg(r) < m. Some poly-
nomial basis operations performed on this field may re-
quire a reduction modulo f . This is a classical operation; 
see for example [4, Chapter 2.3.5].

Let C(x) = ∑d
i=0 ci xi , d ≥ m, be the result of an op-

eration before the reduction mod f is executed. A sim-
ple method for reduction consists of iteratively computing 
C(x) ← C(x) + ci xi−m f (x) for i = d, d − 1, . . . , m, where 
each step i reduces the coefficient ci .

To reduce the number of operations we replace
ci xi−m f (x) with ci xi−mr(x) in the equation above, and then 
compute the final result mod xm , which is a simple trun-
cation. This avoids one XOR per iteration because r has 
one less coefficient than f . We consider the truncation to 
have negligible cost. Algorithm 1 is a pseudocode repre-
sentation of these operations. The input consists of d + 1
signals (the input coefficients), which are modified using 
XOR operations and returned as m signals. We describe the 
details of this algorithm since it is a step in the construc-

Fig. 1. Example of circuit generated by 1 by fixing f (x) = x5 + x3 + x2 +
x + 1.

tion of the main contribution of this paper: our squarer 
method.

Algorithm 1 General modular reduction for G F (2m).
Input: C = [c0, c1, c2, ..., cd], d ≥ m, f (x) = xm + r(x)
Output: C mod f
1: for i = d, d − 1, . . . , m do
2: for each exponent e of r do
3: C[i − m + e] ← C[i − m + e] ⊕ C[i]
4: end for
5: end for
6: return C[0], C[1], C[2], . . . , C[m − 1]

By fixing the irreducible polynomial in Algorithm 1, 
the instructions can be mapped naturally to a circuit of 
XOR gates. Fig. 1 shows an example of such circuit, for 
f (x) = x5 + x3 + x2 + x + 1. The input coefficients are 
given at the top, with each numbered row representing a 
step of the algorithm. Note that all steps are in the form 
C[i] ← C[i] ⊕ C[ j] for some i, j. At the bottom of each col-
umn is the wire containing the result signal, along with 
the total circuit delay for that wire, which measures the 
number of XOR operations in its critical path (Tx). The total 
delay of the circuit is therefore the largest of these individ-
ual delays.

Algorithm 1 uses (d − m + 1)wr XOR operations, where 
wr is the weight of the polynomial r. If C is a product 
of two polynomials of degree at most m − 1, then the 
degree of C is at most d ≤ 2m − 2. It is common, in prac-
tical implementations, to fix d = 2m − 2. In this case, the 
number of XOR operations to perform a modular reduction 
for trinomials and pentanomials are 2m − 2 and 4m − 4, 
respectively. The trinomial algorithm can be trivially mod-
ified to the equally spaced case, xm + xm/2 + 1, for m even, 
where many operations cancel themselves out and result 
in 1.5m − 1 XOR operations [5].
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