
Information Processing Letters 132 (2018) 44–48

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Sorting signed permutations by reversals using link-cut trees

Irena Rusu

LS2N, UMR 6004, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 March 2017
Received in revised form 18 October 2017
Accepted 15 December 2017
Available online 20 December 2017
Communicated by P. Wong

Keywords:
Algorithms
Sorting by reversals
Link-cut tree

E. Tannier, A. Bergeron and M.-F. Sagot proposed an algorithm to sort a signed permutation
P by performing a minimum number of reversals, for which two implementations exist.
With a partition of P in blocks of size b, these implementations take O (n(n

b log b + b))

and respectively O ((n
b)2 + n(log(n

b) + n
b + b)) time, where n is the size of the permutation.

The best running times of O (n
√

n log n) and respectively O (n
√

n) are obtained with b =√
n log n and b = √

n respectively.
Seeking an O (n logn) algorithm requires to drop the b addend in the running time
formulas, which prevents the choice of a large b. To this end, we propose an implementa-
tion of the algorithm whose originality lies in the use of O (log n) aggregate operations
allowed by link-cut trees, and by their filiform variant called log-lists. The resulting
algorithm has the advantage of reaching a running time of O (n(n

b log b)), but also has
the drawback of potentially making use of very large numbers, reducing in practice the
choices of b.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In bioinformatics, a genome with no duplicate gene
is represented as a permutation P on a set of elements
[n] := {1, 2, . . . ,n}. The permutation is signed when the
orientation of each gene, i.e. of each element of the per-
mutation, is indicated by a sign “+” (usually dropped) or
“−”. A reversal is one of the operations allowing to re-
arrange genomes, defined as the left–right inversion of
the elements in an interval of the permutation, together
with the flip of all signs in the interval. Sorting a signed
permutation P by reversals seeks at estimating the evo-
lutionary distance between the genome it represents and
another genome, represented by the identity permutation
Id, by finding the minimum number of reversals allowing
to transform P into Id.

In this paper we consider signed permutations denoted
P = (0 P1 . . . Pn n + 1) over [n] ∪ {0, n + 1}, meaning that

E-mail address: Irena.Rusu@univ-nantes.fr.

elements P0 = 0 and Pn+1 = n + 1 are respectively added
at the beginning and end of every permutation on [n].
We formally define the reversal ρ(i, j) of the interval [i, j]
of P with 1 ≤ i ≤ j ≤ n as the operation transforming P
into (0 P1 . . . Pi−1−P j−P j−1 . . .−Pi P j+1 . . . Pnn + 1). The
problem of sorting a signed permutation by reversals has
been widely studied (see [3]). The first algorithm with a
running time under O (n2) was proposed in [10] by Tan-
nier, Bergeron and Sagot (therefore we will call it the TBS
algorithm). Its first implementation, with running time of
O (n

√
n log n), was reached using a data structure proposed

in [6]. Another implementation proposed in [4] yielded a
O (n

√
n) running time. The next challenge (which seems

reachable, see [9]) is to know whether an O (n log n)-time
algorithm exists for the problem, as is the case for other
similar problems (see [7]).

A better running-time for the TBS algorithm should
reach a (challenging) O (log n) time for performing each re-
versal. With this aim, we propose to use a data structure
called a log-list, that we introduced in [7] and which is
a filiform variant of the very efficient link-cut trees intro-

https://doi.org/10.1016/j.ipl.2017.12.005
0020-0190/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ipl.2017.12.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:Irena.Rusu@univ-nantes.fr
https://doi.org/10.1016/j.ipl.2017.12.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.12.005&domain=pdf

I. Rusu / Information Processing Letters 132 (2018) 44–48 45

Step Reversal Resulting P π S1 S2 V

(0) 0 3 1 −2 4 0+3−3+1−1+2+2−4− empty empty {(0+,1−), (1+,2−), (2+,3−), (3+,4−)}
(1) ρπ (1) 0 3 1 2 4 0+3−3+1−1+2−2+4− ρπ (1) empty {(0+,1−), (2+,3−), (3+,4−)}
(2) ρπ (1) 0 3 1 −2 4 0+3−3+1−1+2+2−4− empty ρπ (1) {(0+,1−), (2+,3−), (3+,4−)}
(1) ρπ (2) 0 −1 −3 −2 4 0+1+1−3+3−2+2−4− ρπ (2) ρπ (1) {(0+,1−), (3+,4−)}
(1) ρπ (0) 0 1 −3 −2 4 0+1−1+3+3−2+2−4− ρπ (2),ρπ (0) ρπ (1) {(3+,4−)}
(1) ρπ (3) 0 1 2 3 4 0+1−1+2−2+3−3+4− ρπ (2),ρπ (0),ρπ (3) ρπ (1) ∅
(1) ρπ (3) 0 1 −3 −2 4 0+1−1+3+3−2+2−4− ρπ (2),ρπ (0) ρπ (1) ∅
(3) Return S1, S2, that is ρπ (2),ρπ (0),ρπ (1)

Fig. 1. The TBS algorithm for P = (0 3 1−2 4). Oriented pairs, as well as the reversals performed, are in bold.

duced by Sleator and Tarjan [8]. Whereas the bottleneck of
our implementation of the TBS algorithm is the potential
use of large numbers, we believe that our approach has
the merit of showing an original (and probably improv-
able) way of dealing with signed reversals.

2. Main definitions and the TBS algorithm

A pair (Pi, Pi+1), 0 ≤ i ≤ n, is an adjacency if Pi + 1 =
Pi+1, otherwise it is a breakpoint. The extended permutation
of P is the signed permutation π(P) (or π for short) with
2n + 2 elements, obtained from P by:

• replacing element 0 by element 0+ and element n + 1
by element (n + 1)− ,

• for each p �= 0, n + 1, replacing each element +p by
the pair of elements p− p+ and each element −p by
the pair of elements p+ p− .

Adjacencies of P are thus represented in π by pairs of
elements (p+, (p + 1)−) that are next to each other (what-
ever the order). Within π we identify oriented pairs (re-
spectively unoriented pairs), which are pairs (p+, (p + 1)−)

such that p and p + 1 have different (respectively equal)
signs in P . Any reversal ρ(i, j) on P is simulated by the
reversal ρ(2i − 1, 2 j) on π , and vice-versa.

As the aim of sorting by reversals is to obtain π(Id)

from π by performing a minimum number of reversals,
each reversal seeks to bring p+ (for some p) next to
(p + 1)− by a reversal on π which may be seen as corre-
sponding to the oriented pair (p+, (p + 1)−). This reversal,
denoted ρπ (p), is defined as the reversal ρ(2i − 1, 2 j) on
π spanning all the pairs k+k− or k−k+ contained in π be-
tween p+ (included) and (p + 1)− (included).

The TBS algorithm [10] (except its part clearing the con-
nected components, solved in [5] in almost linear time) is
below. Fig. 1 shows an example.

(0) Let V = {(p+, (p + 1)−) | non-adjacent pair}. Let S1, S2
be empty sequences of reversals.

(1) While there is an oriented pair (p+, (p + 1)−) in V ,
add ρπ (p) at the end of S1, perform the reversal and
remove the resulting adjacencies (one or two) from V .
If the pair corresponding to the first reversal of S2 is
not oriented, then perform the latter reversal back and
remove it from S1 (but do not update V).

(2) If V is not empty, then re-apply the reversals from S1
in reverse order (but do not update V) until one of the
pairs in V becomes oriented. While doing this, move

each performed reversal from the end of S1 to the be-
ginning of S2. Goto step (1).

(3) Return the sequence S1, S2.

The implementations of the TBS algorithm proposed in
[10] (using the data structure proposed by Kaplan and
Verbin in [6]) and in [4] both cut the permutation into
contiguous blocks of size b, use an underlying data struc-
ture allowing to reach a given block in logarithmic time
of the number of blocks, and an inner data structure to
store, split, reverse and concatenate blocks. The differences
come from the management of oriented/unoriented pairs,
which is done within each block for Kaplan and Verbin’s
data structure, and is distributed inside and outside the
blocks, at each level of the underlying structure, for Han’s
approach. As a result, the running times of the algorithms
are O (n(n

b log b + b)) (Kaplan and Verbin’s approach) and
respectively O ((n

b)2 + n(log(n
b) + n

b + b)) (Han’s approach).
The choices of b = √

n log n and respectively of b = √
n

allow to equilibrate all the terms in each sum, yielding
O (n

√
n log n) and respectively O (n

√
n) best running times.

In both these approaches, the b addend in the complex-
ity formula looks like a failure. The inner data structure in
each block is made so as to allow a quick update of the
oriented/unoriented pairs once a reversal is performed, but
not to cut a block by separating its elements smaller or
larger than a given value. Therefore, when a reversal has
to be performed, the two blocks containing the endpoints
of the reversal are cut by successively considering each el-
ement of each block, thus in O (b) time.

We propose here a different approach, aiming at drop-
ping the b addend in the complexity formula by: propos-
ing a partition of π in non-contiguous blocks, containing
both endpoints of each pair affected to the block; affecting
weights to the endpoints of each pair (p+, (p + 1)−) such
that a pair has non-zero sum of its two weights iff the pair
is oriented; choosing the weights so that the total sum of
the elements in each block indicates the existence and, if
so, the localization of an oriented pair.

3. Outline of our implementation

Link-cut trees [8] aim at efficiently maintaining a for-
est of vertex-disjoint dynamic rooted trees with weighted
arcs under cut and link operations. They allow to perform
in logarithmic time a long list of operations, among which
aggregate operations on paths. As a compensation, usual
operations like getting the weight of an arc or modify-
ing it also need logarithmic time. Note that, depending

Download English Version:

https://daneshyari.com/en/article/6874228

Download Persian Version:

https://daneshyari.com/article/6874228

Daneshyari.com

https://daneshyari.com/en/article/6874228
https://daneshyari.com/article/6874228
https://daneshyari.com

