
Information Processing Letters 131 (2018) 7–14

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Recognizing Union-Find trees is NP-complete ✩

Kitti Gelle, Szabolcs Iván ∗

University of Szeged, Hungary

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 October 2015
Received in revised form 11 September
2017
Accepted 12 November 2017
Available online 14 November 2017
Communicated by A. Tarlecki

Keywords:
Union-Find trees
Complexity
NP-completeness
Data structures
Union-by-size

Disjoint-Set forests, consisting of Union-Find trees, are data structures having a widespread
practical application due to their efficiency. Despite them being fundamental, no exact
structural characterization of these trees is known (such a characterization exists for Union
trees which are constructed without using path compression). In this paper we provide
such a characterization by means of a simple push operation and we show that the
problem of deciding whether a given tree is a Union-Find tree is NP-complete.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Disjoint-Set forests, introduced in [10], are fundamental
data structures in many practical algorithms where one has
to maintain a partition of some set, which support three
operations: creating a partition consisting of singletons,
querying whether two given elements are in the same class
of the partition (or equivalently: finding a representative of
a class, given an element of it) and merging two classes.
Practical examples include e.g. building a minimum-cost
spanning tree of a weighted graph [4], unification algo-
rithms [17] etc.

To support these operations, even a linked list repre-
sentation suffices but to achieve an almost-constant amor-
tized time cost per operation, Disjoint-Set forests are used
in practice. In this data structure, sets are represented as
directed trees with the edges directed towards the root;
the create operation creates n trees having one node each

✩ Kitti Gelle was supported by the ÚNKP-17-3-I-SZTE-18 New National
Excellence Program of the Ministry of Human Capacities. Szabolcs Iván
was supported by NKFI grant number K108448.

* Corresponding author.
E-mail address: szabivan@inf.u-szeged.hu (S. Iván).

(here n stands for the number of the elements in the uni-
verse), the find operation takes a node and returns the
root of the tree in which the node is present (thus the
same-class(x, y) operation is implemented as find(x) ==
find(y)), and the merge(x, y) operation is implemented by
merging the trees containing x and y, i.e. making one of
the root nodes to be a child of the other root node (if the
two nodes are in different classes).

In order to achieve near-constant efficiency, one has to
keep the (average) height of the trees small. There are two
“orthogonal” methods to do that: first, during the merge
operation it is advisable to attach the “smaller” tree be-
low the “larger” one. If the “size” of a tree is the num-
ber of its nodes, we say the trees are built up according
to the union-by-size strategy. If the size of the tree is its
depth, then we talk about the union-by-rank strategy. Sec-
ond, during a find operation invoked on some node x of
a tree, one can apply the path compression method. Doing
so, one reattaches each ancestor of x directly to the root
of the tree in which they are present. If one applies both
the path compression method and either one of the union-
by-size or union-by-rank strategies, then any sequence of
m operations on a universe of n elements has worst-case
time cost O (mα(n)) where α is the inverse of the ex-

https://doi.org/10.1016/j.ipl.2017.11.003
0020-0190/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ipl.2017.11.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:szabivan@inf.u-szeged.hu
https://doi.org/10.1016/j.ipl.2017.11.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.11.003&domain=pdf

8 K. Gelle, S. Iván / Information Processing Letters 131 (2018) 7–14

Fig. 1. Merge, collapse and push.

tremely fast growing (not primitive recursive) Ackermann
function. As α(n) ≤ 5 for each practical value of n (say,
below 265535), hence it can be seen an amortized almost-
constant time cost [22]. Since it’s proven [9] that any data
structure has worst-case time cost �(mα(n)), the Disjoint-
Set forests equipped with a strategy and path compression
offer a theoretically optimal data structure which performs
exceptionally well also in practice. For more details see
standard textbooks on data structures, e.g. [4].

Due to these facts, it is certainly interesting both from
the theoretical as well as the practical points of view to
characterize those trees that can arise from a forest of
singletons after a number of merge and find operations,
which we call Union-Find trees in this paper. One could
e.g. test Disjoint-Set implementations since if at any given
point of execution a tree of a Disjoint-Set forest is not a
valid Union-Find tree, then it is certain that there is a bug
in the implementation of the data structure (though we
note at this point that, due to their simple implementation,
Union-Find trees are sometimes regarded as being “primi-
tive” in the sense that it is possible to implement a correct
version of them that needs not be certifying [20]). Never-
theless, only the characterization of Union trees is known
up till now [2], i.e. which correspond to the case when
one uses one of the union-by-strategies but not path com-
pression. Since in that case the data structure offers only
a theoretic bound of �(log n) on the amortized time cost,
in practice all implementations imbue path compression as
well, so for a characterization to be really useful, it has to
cover this case as well.

In this paper we show that the recognition problem of
Union-Find trees is NP-complete when the union-by-size
strategy is used (and leave open the case of the union-by-
rank strategy). This confirms the statement from [2] that
the problem “seems to be much harder” than recogniz-
ing Union trees (which in turn can be done in low-degree
polynomial time).

Related work. There is an increasing interest in determin-
ing the complexity of the recognition problem of vari-
ous data structures. The problem was considered for suf-
fix trees [16,21], (parametrized) border arrays [15,19,8,14,
15], suffix arrays [1,7,18], KMP tables [6,12], prefix ta-
bles [3], cover arrays [5], and directed acyclic word and
subsequence graphs [1]. Union-Find trees are fundamental
data structures used in the context of dynamic graph algo-
rithms [23].

2. Notation

A tree is a tuple t = (Vt , roott , parentt) with Vt being
the finite set of its nodes, roott ∈ Vt its root and parentt :
(Vt − {roott}) → Vt mapping each non-root node to its
parent (so that the graph of parentt is a directed acyclic
graph, with edges being directed towards the root).

For a tree t and a node x ∈ Vt , let children(t, x) stand
for the set {y ∈ Vt : parentt(y) = x} of its children and
children(t) stand as a shorthand for children(t, roott),
the set of depth-one nodes of t . Two nodes are siblings
in t if they have the same parent. Also, let x �t y de-
note that x is an ancestor of y in t , i.e. x = parent

k
t (y) for

some k ≥ 0. Let size(t, x) = |{y ∈ Vt : x �t y}| stand for the
number of descendants of x (including x itself). Let size(t)
stand for size(t, roott), the number of nodes in the tree
t . For x ∈ Vt , let t|x stand for the subtree (V x = {y ∈ Vt :
x �t y}, x, parentt |V x) of t rooted at x. When x, y ∈ Vt , we
say that x is lighter than y (or y is heavier than x) in t if
size(t, x) < size(t, y).

Two operations on trees are that of merging and
collapsing. Given two trees t = (Vt , roott , parentt) and
s = (V s, roots, parents) with Vt and V s being disjoint,
their merge merge(t, s) (in this order) is the tree (Vt ∪
V s, roott , parent) with parent(x) = parentt(x) for x ∈
Vt , parent(roots) = roott and parent(y) = parents(y)

for each non-root node y ∈ V s of s. Given a tree t =
(V , root, parent) and a node x ∈ V , the tree collapse(t, x)
is the tree (V , root, parent

′) with parent
′(y) = root if

y is a non-root ancestor of x in t , and parent
′(y) =

parent(y) otherwise. For examples, see Fig. 1.
The class of Union trees is the least class of trees sat-

isfying the following two conditions: every singleton tree
(having exactly one node) is a Union tree, and if t and s
are Union trees with size(t) ≥ size(s), then merge(t, s) is a
Union tree as well.

Analogously, the class of Union-Find trees is the least
class of trees satisfying the following three conditions:
every singleton tree is a Union-Find tree, if t and s are
Union-Find trees with size(t) ≥ size(s), then merge(t, s) is
a Union-Find tree as well, and if t is a Union-Find tree and
x ∈ Vt is a node of t , then collapse(t, x) is also a Union-
Find tree.

We’ll frequently sum the size of “small enough” chil-
dren of nodes, so we introduce one more shorthand:
for a tree t , a node x of t , and a threshold W ≥ 0, let
sumsize(t, x, W) stand for

∑{size(t, y) : y ∈
children(t, x), size(t, y) ≤ W }. We say that a node x of a
tree t satisfies the Union condition if for each child y of x we
have sumsize(t, x, W) ≥ W where W = size(t, y) − 1. Oth-

Download English Version:

https://daneshyari.com/en/article/6874233

Download Persian Version:

https://daneshyari.com/article/6874233

Daneshyari.com

https://daneshyari.com/en/article/6874233
https://daneshyari.com/article/6874233
https://daneshyari.com

