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Disjoint-Set forests, consisting of Union-Find trees, are data structures having a widespread 
practical application due to their efficiency. Despite them being fundamental, no exact 
structural characterization of these trees is known (such a characterization exists for Union 
trees which are constructed without using path compression). In this paper we provide 
such a characterization by means of a simple push operation and we show that the 
problem of deciding whether a given tree is a Union-Find tree is NP-complete.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Disjoint-Set forests, introduced in [10], are fundamental 
data structures in many practical algorithms where one has 
to maintain a partition of some set, which support three 
operations: creating a partition consisting of singletons, 
querying whether two given elements are in the same class 
of the partition (or equivalently: finding a representative of 
a class, given an element of it) and merging two classes. 
Practical examples include e.g. building a minimum-cost 
spanning tree of a weighted graph [4], unification algo-
rithms [17] etc.

To support these operations, even a linked list repre-
sentation suffices but to achieve an almost-constant amor-
tized time cost per operation, Disjoint-Set forests are used 
in practice. In this data structure, sets are represented as 
directed trees with the edges directed towards the root; 
the create operation creates n trees having one node each 
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(here n stands for the number of the elements in the uni-
verse), the find operation takes a node and returns the 
root of the tree in which the node is present (thus the 
same-class(x, y) operation is implemented as find(x) ==
find(y)), and the merge(x, y) operation is implemented by 
merging the trees containing x and y, i.e. making one of 
the root nodes to be a child of the other root node (if the 
two nodes are in different classes).

In order to achieve near-constant efficiency, one has to 
keep the (average) height of the trees small. There are two 
“orthogonal” methods to do that: first, during the merge 
operation it is advisable to attach the “smaller” tree be-
low the “larger” one. If the “size” of a tree is the num-
ber of its nodes, we say the trees are built up according 
to the union-by-size strategy. If the size of the tree is its 
depth, then we talk about the union-by-rank strategy. Sec-
ond, during a find operation invoked on some node x of 
a tree, one can apply the path compression method. Doing 
so, one reattaches each ancestor of x directly to the root 
of the tree in which they are present. If one applies both 
the path compression method and either one of the union-
by-size or union-by-rank strategies, then any sequence of 
m operations on a universe of n elements has worst-case 
time cost O (mα(n)) where α is the inverse of the ex-
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Fig. 1. Merge, collapse and push.

tremely fast growing (not primitive recursive) Ackermann 
function. As α(n) ≤ 5 for each practical value of n (say, 
below 265535), hence it can be seen an amortized almost-
constant time cost [22]. Since it’s proven [9] that any data 
structure has worst-case time cost �(mα(n)), the Disjoint-
Set forests equipped with a strategy and path compression 
offer a theoretically optimal data structure which performs 
exceptionally well also in practice. For more details see 
standard textbooks on data structures, e.g. [4].

Due to these facts, it is certainly interesting both from 
the theoretical as well as the practical points of view to 
characterize those trees that can arise from a forest of 
singletons after a number of merge and find operations, 
which we call Union-Find trees in this paper. One could 
e.g. test Disjoint-Set implementations since if at any given 
point of execution a tree of a Disjoint-Set forest is not a 
valid Union-Find tree, then it is certain that there is a bug 
in the implementation of the data structure (though we 
note at this point that, due to their simple implementation, 
Union-Find trees are sometimes regarded as being “primi-
tive” in the sense that it is possible to implement a correct 
version of them that needs not be certifying [20]). Never-
theless, only the characterization of Union trees is known 
up till now [2], i.e. which correspond to the case when 
one uses one of the union-by-strategies but not path com-
pression. Since in that case the data structure offers only 
a theoretic bound of �(log n) on the amortized time cost, 
in practice all implementations imbue path compression as 
well, so for a characterization to be really useful, it has to 
cover this case as well.

In this paper we show that the recognition problem of 
Union-Find trees is NP-complete when the union-by-size 
strategy is used (and leave open the case of the union-by-
rank strategy). This confirms the statement from [2] that 
the problem “seems to be much harder” than recogniz-
ing Union trees (which in turn can be done in low-degree 
polynomial time).

Related work. There is an increasing interest in determin-
ing the complexity of the recognition problem of vari-
ous data structures. The problem was considered for suf-
fix trees [16,21], (parametrized) border arrays [15,19,8,14,
15], suffix arrays [1,7,18], KMP tables [6,12], prefix ta-
bles [3], cover arrays [5], and directed acyclic word and 
subsequence graphs [1]. Union-Find trees are fundamental 
data structures used in the context of dynamic graph algo-
rithms [23].

2. Notation

A tree is a tuple t = (Vt , roott , parentt) with Vt being 
the finite set of its nodes, roott ∈ Vt its root and parentt :
(Vt − {roott}) → Vt mapping each non-root node to its 
parent (so that the graph of parentt is a directed acyclic 
graph, with edges being directed towards the root).

For a tree t and a node x ∈ Vt , let children(t, x) stand 
for the set {y ∈ Vt : parentt(y) = x} of its children and 
children(t) stand as a shorthand for children(t, roott), 
the set of depth-one nodes of t . Two nodes are siblings
in t if they have the same parent. Also, let x �t y de-
note that x is an ancestor of y in t , i.e. x = parent

k
t (y) for 

some k ≥ 0. Let size(t, x) = |{y ∈ Vt : x �t y}| stand for the 
number of descendants of x (including x itself). Let size(t)
stand for size(t, roott), the number of nodes in the tree 
t . For x ∈ Vt , let t|x stand for the subtree (V x = {y ∈ Vt :
x �t y}, x, parentt |V x) of t rooted at x. When x, y ∈ Vt , we 
say that x is lighter than y (or y is heavier than x) in t if 
size(t, x) < size(t, y).

Two operations on trees are that of merging and 
collapsing. Given two trees t = (Vt , roott , parentt) and 
s = (V s, roots, parents) with Vt and V s being disjoint, 
their merge merge(t, s) (in this order) is the tree (Vt ∪
V s, roott , parent) with parent(x) = parentt(x) for x ∈
Vt , parent(roots) = roott and parent(y) = parents(y)

for each non-root node y ∈ V s of s. Given a tree t =
(V , root, parent) and a node x ∈ V , the tree collapse(t, x)
is the tree (V , root, parent

′) with parent
′(y) = root if 

y is a non-root ancestor of x in t , and parent
′(y) =

parent(y) otherwise. For examples, see Fig. 1.
The class of Union trees is the least class of trees sat-

isfying the following two conditions: every singleton tree
(having exactly one node) is a Union tree, and if t and s
are Union trees with size(t) ≥ size(s), then merge(t, s) is a 
Union tree as well.

Analogously, the class of Union-Find trees is the least 
class of trees satisfying the following three conditions: 
every singleton tree is a Union-Find tree, if t and s are 
Union-Find trees with size(t) ≥ size(s), then merge(t, s) is 
a Union-Find tree as well, and if t is a Union-Find tree and 
x ∈ Vt is a node of t , then collapse(t, x) is also a Union-
Find tree.

We’ll frequently sum the size of “small enough” chil-
dren of nodes, so we introduce one more shorthand: 
for a tree t , a node x of t , and a threshold W ≥ 0, let 
sumsize(t, x, W ) stand for 

∑{size(t, y) : y ∈
children(t, x), size(t, y) ≤ W }. We say that a node x of a 
tree t satisfies the Union condition if for each child y of x we 
have sumsize(t, x, W ) ≥ W where W = size(t, y) − 1. Oth-
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