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We consider three network models where information items flow from a source to a 
sink node: flow networks, depletable channels, and traffic networks. We start with the 
standard model of flow networks; we characterise graph topologies that admit non-
maximum saturating flows, under some capacity-to-edge assignment. We then consider 
a model where routing is constrained by energy available on nodes in finite supply (like 
in Smartdust) and efficiency is related to energy consumption and again to maximality of 
saturating flows. Finally, we consider a traffic model for selfish routing, where efficiency is 
related to latency at a Wardrop equilibrium. We show that all these forms of inefficiency 
yield different classes of graphs (apart from in the acyclic case, where the first and the last 
forms generate the same class). Interestingly, in all cases inefficient graphs can be made 
efficient by removing edges; this resembles a well-known phenomenon, called Braess’s 
paradox.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Through the years, several formal models have emerged 
for studying network design in terms of traffic, proto-
cols, energy consumption, and so on (see, e.g., [1,5,16,18,
22], just to cite a few). We are interested in networks as 
channels for transmitting information and aim at studying 
those net topologies where greedy routing always leads 
to optimal network utilisation. Thus, we model nets as 
st-digraphs, that are directed graphs with a chosen pair 
of nodes called source (s) and sink (t). At a given time, an 
amount of information is fed to the source and flows to 
the sink.

We start with the standard model of flow networks [1], 
where edges are endowed with capacities and a flow is 
possible only if it does not exceed the capacity of all edges 
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it passes through. In the example of Fig. 1(b), two informa-
tion units can flow from s to t , provided that one of them 
takes the ‘northern’ path s u t and the other one takes the 
‘southern’ path s v t . However, in a distributed scenario, 
due to partial knowledge of the net, the node u could 
choose to send to v the item received from s. In this case, 
the flow would take the path s u v t and the net would 
be saturated by exchanging one information unit only. This 
can be considered a form of inefficiency, since not all pos-
sible flow is delivered. Indeed, flow networks built upon 
the graph W of Fig. 1(a), under some capacity-to-edge as-
signment (for example the one depicted in Fig. 1(b)), can 
have non-maximum saturating flows. We call edge-weak
those graphs that, as W , suffer from this undesirable prop-
erty. For calculating a maximum flow in an edge-weak 
graph, we cannot use a simple iterated DFS (or, equiva-
lently, let every node autonomously choose nodes to for-
ward information items it receives) but more sophisticated 
algorithms are needed (see, e.g., [1,2,13,21]).

Then, we consider depletable channels [7], introduced 
as a simple model for energy consumption in wireless 
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Fig. 1. The Wheatstone graph W (a) and three models built upon W : a flow network (b), a depletable channel (c), and a traffic network (d).

networks. There, st-digraphs have nodes equipped with a 
non-negative number representing depletable charge (as 
in Smartdust [24]). Devices have a depletable amount of 
energy that is consumed throughout their life because of 
information passing. By assuming that every information 
item transmitted consumes one charge unit of every node 
it passes through, charges place constraints on admissible 
flows. In Fig. 1(c), we depict a depletable channel built 
upon W , where nodes are labelled with their charge (1 for 
the nodes corresponding to b and c and ‘◦’ – i.e., a big 
enough charge – for a and d). We can forward two in-
formation units, if we choose the ‘right’ paths (again, the 
northern and the southern ones), or one unit only, if we 
choose the ‘wrong’ path. Analogously to the case of flow 
networks, we call node-weak those graphs that exhibit this 
form of inefficiency, i.e. graphs that, for some charge-to-
node assignment, admit non-maximum saturating flows.

Finally, we consider traffic networks [3,5], where edges 
are labelled with functions that model latency in terms 
of edge congestion, that in turn is modelled by the flow 
that passes through them. In this model, every flow is 
possible and the aim is to minimise the overall delay expe-
rienced in the system by autonomous and selfish users at 
the equilibrium of a noncooperative game, called Wardrop 
equilibrium [23]. In Fig. 1(d), we depict a traffic network 
on top of W , with two ‘slow’ edges ((u, t) and (s, v), that 
cause a delay of 1 independently of the amount of flow 
they receive), one ‘ideal’ edge ((u, v), where no delay is 
present) and two ‘realistic’ edges ((v, t) and (s, u), that 
cause a delay proportional to the amount of flow they re-
ceive). Selfish users, each of which controls a negligible 
part of traffic ε, choose the quickest path s u v t , because 
there they experience a delay of 2 ε instead of 1 +ε experi-
enced in s u t or s v t . However, this leads to the congestion 
of the path s u v t . If we consider a flow of value 1, at the 
Wardrop equilibrium all users pass along the path s u v t , 
and their experienced delay is 2. Paradoxically, if we re-
move the ‘ideal’ edge (u, v), at the Wardrop equilibrium, 
half of users will choose the path s u t and the remaining 
half the path s v t: in such a case their experienced de-
lay would be 3/2. This phenomenon has been known for 
a long time in the traffic network community as Braess’s 
paradox [3,6], that occurs when the equilibrium cost may 
be reduced by removing an edge (or, equivalently, by rais-
ing the latency of such an edge). The property of a graph 
to lead, under some latency function, to the possibility of 
experiencing the Braess’s paradox has been called vulnera-
bility in [20].

Edge-weakness, node-weakness, and vulnerability share 
the characteristic that inefficient graphs can be amended 
by removing edges. In particular, if we remove the vertical 
edge in the examples given in Figs. 1(b), 1(c), and 1(d), we 

obtain networks that can be saturated only by maximum 
flows (in the first two cases) and that have the minimum 
delay at a Wardrop equilibrium (in the third case) under 
every capacity/charge/latency function, respectively.

Contributions. In this paper, we characterise all the inef-
ficiencies described above for general directed st-graphs 
and compare them from a graph-theoretical perspective. In 
Section 2, we characterise edge-weak graphs. In Section 3, 
we recall the characterisation given in [8] for node-weak
graphs. In Section 4 we recall the characterisation given 
in [9] for vulnerable graphs that extends similar charac-
terisations for undirected graphs given in [17] and for a 
restricted family of directed graphs given in [10].

Stemming from these characterisations, in Section 5 we 
compare all these three classes of digraphs. In the gen-
eral case, vulnerability implies edge-weakness; moreover, 
vulnerable graphs always contain an acyclic node-weak 
subgraph. This suggests that the core reason that makes 
a graph vulnerable is indeed its node-weak subgraphs. If 
we restrict our attention to DAGs, node-weakness implies 
both vulnerability and edge-weakness; these two classes 
coincide and they coincide with the class of graphs that 
are not series-parallel [19].

Interestingly, both in the acyclic and in the general case, 
the notions of node- and edge-weakness do not coincide. 
This is in sharp contrast with many classical results on 
flow networks, where models with capacities on nodes or 
on edges are interchangeable [1].

Preliminaries on graphs and flows. A directed graph G =
(V , E) consists of a set V of vertices (or nodes) and of 
a set E ⊆ V × V of edges (or arcs). Throughout the pa-
per, we only consider simple st-digraphs that are directed 
graphs without self-loops and parallel edges, with a fixed 
source node s (without incoming edges) and sink node t
(without outgoing edges). A (possibly cyclic) path p from 
a node u to v , notation u p� v , is a sequence z1 . . . zn of 
nodes such that for 1 ≤ i < n, (zi, zi+1) is an edge, z1 = u, 
and zn = v . We say that p touches the node u if u = zi for 
some i (1 ≤ i ≤ n). Analogously, p touches the edge (u, v)

if u = zi and v = zi+1 for some i (1 ≤ i < n). Sometimes, 
we shall consider paths as sets of nodes (resp. of edges), 
and just write u ∈ p (resp. e ∈ p) to denote that p touches 
node u (resp. edge e). Along the same way, if X is a set 
of nodes (resp. edges), we can write p ∩ X to denote the 
set of nodes (resp. edges) in X touched by p. An st-path
is a path from s to t; we denote with P (G) the set of all 
st-paths in G .

A flow ϕ is a function ϕ : P (G) → R
+ . The value |ϕ| of 

a flow is defined as 
∑

p∈P (G) ϕ(p). A flow induces a unique 
flow on edges and nodes. For any edge e ∈ E , ϕ(e) =
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