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When playing certain specific classes of no-regret algorithms such as multiplicative updates 
and replicator dynamics in atomic congestion games, some previous convergence analyses 
were done with the standard Rosenthal potential function in terms of mixed strategy 
profiles (i.e., probability distributions on atomic flows), which could be non-convex. In 
several other works, the convergence, when playing the mirror-descent algorithm (a more 
general family of no-regret algorithms including multiplicative updates, gradient descents, 
etc.), was guaranteed with a convex potential function in terms of nonatomic flows as 
an approximation of the Rosenthal one. The convexity of the potential function provides 
convenience for analysis. One may wonder if the convergence of mirror descents can still 
be guaranteed directly with the non-convex Rosenthal potential function. In this paper, 
we answer the question affirmatively for discrete-time generalized mirror descents with 
the smoothness property (similarly adopted in many previous works for congestion games 
and markets) and for continuous-time generalized mirror descents with the separability of 
regularization functions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Playing learning algorithms in repeated games has been 
extensively studied within this decade, especially with 
generic no-regret algorithms [3,8] and various specific no-
regret algorithms [9,10,4–6,12]. Multiplicative updates are 
played in atomic congestion games to reach pure Nash 
equilibria with high probability with full information in 
[9], and in load-balancing games to converge to certain 
mixed Nash equilibria with bulletin-board posting in [10]. 
The family of mirror descents [1], including multiplica-
tive updates, gradient descents, and many more classes 
of algorithms by choosing the corresponding regulariza-
tion functions, are generalized in the bulletin-board model, 
and even with only bandit feedbacks in (respectively, 
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nonatomic and atomic) congestion games to guarantee 
convergence to approximate equilibria [4–6].

For the analyses for multiplicative updates and replica-
tor dynamics (which can be seen as a continuous variant of 
multiplicative updates) in [9,12] were accomplished with 
a standard Rosenthal potential function, in terms of mixed 
strategy profiles (probability distributions on atomic flows), 
which may be non-convex. On the other hand, the con-
vergence analyses for multiplicative updates in [10] and 
mirror descents (even more general than multiplicative up-
dates) in [4–6] were done with a convex potential function 
in terms of nonatomic flows as an approximation of the 
Rosenthal one.1 It can be seen that though with different 

1 There is a tradeoff of an error from the nonlinearity of cost functions 
if the implication of reaching approximate equilibria, which is not our 
focus here, is needed besides the convergence guarantee ([10,5,6]).
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techniques, the properties from convexity and others help 
there, especially for bounding the convergence time.

One may wonder if the convergence of mirror de-
scents can still be guaranteed directly with the non-convex 
Rosenthal potential function. Nevertheless, as far as we 
are concerned, there has not been an explicit convergence 
analysis. Recently in [13,11], it is shown that gradient de-
scent converges to a local minimizer almost surely with 
random initialization if it ever converges. Their focus in 
there is to ensure that when gradient descent does con-
verge, it is to minimisers, never to saddle points; still, 
there is no convergence guarantee for mirror descents in 
atomic congestion games. In this paper, we affirmatively 
answer the question whether generalized mirror descents 
converge with the non-convex Rosenthal potential func-
tion in atomic congestion games: convergences guaranteed 
for discrete-time generalized mirror descents with the help 
of the smoothness property (similarly adopted in [2,7,4–6]) 
and for continuous-time generalized mirror descents with 
the separability of regularization functions (as in [7]). Note 
that although we do not show what our generalized mirror 
descent converges to here, the result of [13,11] indicates 
that it converges to minimizers at least for gradient de-
scents.

2. Preliminaries

We need to formally define the game and potential 
function before we proceed. We consider the follow-
ing atomic congestion game, described by (N, E, (Si)i∈N ,

(ce)e∈E ), where N is the set of players, E is the set of 
m edges (resources), Si ⊆ 2E is the collection of allowed 
paths (subsets of resources) for player i, and ce is the cost 
function of edge e, which is a nondecreasing function of 
the amount of flow on it. Let us assume that there are n
players, each path has length at most m, and each player 
has a flow of amount 1/n to route.

The mixed strategy of each player i is to send her en-
tire flow on a single path, chosen randomly according to 
some distribution over her allowed paths, which can be 
represented by a |Si|-dimensional vector pi = (piγ )γ ∈Si , 
where piγ ∈ [0, 1] is the probability of choosing path γ . 
Let Ki denote the feasible set of all such pi ∈ [0, 1]|Si | for 
player i, and let K =K1 × ... ×Kn ⊆ R

d be the feasible set 
of all such joint strategy profiles p = (p1, ..., pn) of the n
players.

�i is a random path, and �−i is a vector � = (�i)i∈N
except �i . We consider the following Rosenthal poten-
tial function in terms of mixed strategy profile p ([9,12]), 
where ci is player i’s cost function and ce is the cost func-
tion of edge e.

�(p) = E�−i [�−i(�−i)] + E�[ci(�)] (1)

= E�−i [
∑
e∈E

Ki(e)∑
j=1

ce( j/n)] + E�[ci(�)], (2)

where Ki(e) is a random variable defined as |{ j : j �= i,
e ∈ � j}| and �−i(�−i) is defined as 

∑
e∈E

∑Ki(e)
j=1 ce( j/n). 

We assume that any edge cost function e satisfies the con-
ditions that for any y ∈ [0, 1], ce(0) = 0, ce(1) = 1, and 

ce(y) ≤ by for a nonnegative constant b. Let �i have value 
γ , which is a strategy for i, with probability piγ , and 
player i’s expected individual cost E�[ci(�)] is defined as 
follows.

E�[ci(�)] =
∑
γ ∈Si

piγ ciγ , (3)

where player i’s expected individual cost for choosing 
γ over the randomness from the other players is ciγ =
E�−i [ci(γ , �−i)] = ∑

e∈γ E�−i [ce(
1+Ki(e)

n )].
Given the essential definitions above, we have the fol-

lowing properties to be used in Section 3.

∂�(p)

∂ piγ
= ciγ , (4)

∂2�(p)

∂ piγ ∂ p jγ ′
=

∑
e∈γ ∩γ ′

∂ciγ

∂ p jγ ′
. (5)

3. Dynamics and convergence

We introduce our continuous-time generalized mirror-
descent algorithm first and then the discrete-time general-
ized mirror-descent algorithm, along with the convergence 
results taking advantage of the separability of regulariza-
tion functions and the smoothness of the potential func-
tion, respectively.

For both continuous- and discrete-time dynamics, ηi >

0 is player i’s learning rate, Ri : Ki → R is player i’s regu-
larization function, and B Ri (·, ·) is the Bregman divergence 
with respect to Ri defined as

BRi (ui, vi) = Ri(ui) − Ri(vi) − 〈∇Ri(vi), ui − vi〉
for ui, vi ∈ Ki . For example, when choosing Ri(ui) =
||ui ||22/2 for each i, and thus BRi (ui, vi) = ||ui − vi ||22/2
for ui, vi ∈ Ki , each player plays the gradient-descent 
algorithm; when choosing Ri(ui) = ∑

s ui,s ln(ui,s − ui,s)

for each i, and thus BRi (ui, vi) = ∑
s ui,s ln(ui,s/vi,s) for 

ui, vi ∈ Ki , each player plays the multiplicative update al-
gorithm.

Continuous-time generalized mirror descents

We consider the case where each regularization func-
tion is a separable function, i.e., it is of the form 

∑
s Ri(ui,s)

for a 1-dimensional function Ri : R → R [7]. We have to 
point out that the regularization functions that many well-
known algorithms use are actually separable. For instance, 
||ui ||22/2 = ∑

s ||ui,s||22/2 for each i, and 
∑

s ui,s ln(ui,s −
ui,s) is by definition separable for each i. The continu-
ous update rule with respect to BRi (·, ·) is defined as fol-
lows. Note that each player i can have her own ηi in such 
continuous-time generalized mirror descents. Let

pi(ε) = arg min
zi∈Ki

{ηi〈(ct
iγ )γ , zi〉 + 1

ε
BRi (zi, pt

i )}. (6)

dpt
i

dt
= lim

ε→0

pi(ε) − pt
i

ε
. (7)
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