
Information Processing Letters 130 (2018) 46–51

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Two-string consensus problem under non-overlapping

inversion and transposition distance

Toan Thang Ta, Cheng-Yao Lin, Chin Lung Lu ∗

Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 November 2016
Accepted 22 October 2017
Communicated by R. Uehara

Keywords:
Algorithms
Computational biology
Two-string consensus problem
Inversion
Transposition

For biological sequences that can be represented as strings over a finite alphabet, inversion
and transposition are commonly observed mutation operations. The non-overlapping
inversion and transposition distance (also simply called mutation distance) between two
strings is defined as the minimum number of non-overlapping inversion and transposition
operations used to transform one string into the other. Given two strings of the same
length n and a constant c ≥ 0, the two-string consensus problem under mutation distance
is to determine whether or not there exists a string s∗ such that the mutation distance
from s∗ to each input string does not exceed c. In this study, we present an O (n5) time
and O (n4) space algorithm to solve this problem.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Given a set of strings S = {s1, s2, . . . , sk} and a con-
stant c, the consensus (string) problem is to find, if it exists,
a string s∗ such that the distance of s∗ from each string of
S does not exceed c, where s∗ is then called the consen-
sus string of S . This problem is a fundamental problem in
computer science and has also many applications in web
searching, computational geometry and computational bi-
ology [1,5,8]. In fact, finding the consensus of a given set
of strings is a hard and challenging problem. Amir et al.
[1] have showed that the consensus problem is NP-hard
for the swap metric and APX-hard for the reversal metric.
Under the Hamming distance, Frances and Litman [4] have
proved that the consensus problem is NP-hard even when
the input strings are binary.

In biology, DNA sequences are subject to be changed by
genome rearrangements (i.e., genetic mutations at the level
of sequence fragments) during their evolutionary process,

* Corresponding author.
E-mail addresses: toanthanghy@gmail.com (T.T. Ta),

begoingto0830@gmail.com (C.-Y. Lin), cllu@cs.nthu.edu.tw (C.L. Lu).

such as inversion and transposition [6]. An inversion op-
eration substitutes a segment of the DNA sequence by its
reverse complement sequence. A transposition (also called
translocation in some literature, e.g., [3]) operation moves
a fragment of the DNA sequence from one location to an-
other or, equivalently, exchanges two adjacent and non-
overlapping fragments on the DNA sequence. The DNA se-
quences changed by the genome rearrangements can be
inherited to subsequent generations, resulting in new DNA
sequences descended from an ancestral sequence. Basically,
the DNA sequences descended from a common ancestor
can be different because they may evolve with different
genetic mutations. Recently, Cho et al. [2] proposed the
following problem to study whether or not two DNA se-
quences are mutated from a common ancestral sequence:
given two strings (or sequences), find a common ancestor
(described as an alignment in [2]) for two input strings us-
ing non-overlapping inversions. In fact, this problem can
be considered as a relaxed version of the consensus prob-
lem on two strings under non-overlapping inversion dis-
tance, where the constant c is not present as a parameter
or, equivalently, c = ∞. For this problem, Cho et al. [2]
also provided an O (n3) time algorithm using O (n2) space,
where n is the size of the two input strings. Later, Zohora

https://doi.org/10.1016/j.ipl.2017.10.006
0020-0190/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ipl.2017.10.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:toanthanghy@gmail.com
mailto:begoingto0830@gmail.com
mailto:cllu@cs.nthu.edu.tw
https://doi.org/10.1016/j.ipl.2017.10.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2017.10.006&domain=pdf

T.T. Ta et al. / Information Processing Letters 130 (2018) 46–51 47

and Rahman [9] gave a counterexample to show that the
algorithm proposed by Cho et al. [2] is incorrect for some
instances. They also designed an algorithm, whose worst-
case and average-case time complexities are claimed to be
O (n4) and O (n3), respectively, to determine the existence
of the consensus string under the non-overlapping inver-
sion distance. Very recently, Cho et al. [3] extended their
algorithm in [2] to deal with reversals and transpositions,
where a reversal operation changes a substring by revers-
ing the order of its characters. Note that the transposition
used in [3] is restricted to exchange two adjacent and non-
overlapping substrings of the same length. The algorithm
in [3] has the same time and space complexities as the one
from [2]. However, we found that the algorithm proposed
by Cho et al. [3] is still incorrect with the counterexample
given by Zohora and Rahman in [9].

To address the shortcoming and limitations in the algo-
rithm proposed by Cho et al. [3], we study the consensus
problem on two strings (also called two-string consensus
problem) using non-overlapping inversion and transposi-
tion distance in this work. As a result, we devise an al-
gorithm to determine the existence of a consensus string
for two input strings in O (n5) time and O (n4) space in
the worst case. It should be noted that in our study, the
threshold c is required as a part of the problem’s input, in-
version is the reverse and complement of a string, and the
lengths of two adjacent and non-overlapping substrings
exchanged by a transposition operation can be different
(not necessarily equivalent). The rest of the paper is orga-
nized as follows. In Section 2, we give the formal definition
of the problem. Subsequently, we discuss the main algo-
rithm and its complexity analysis in Section 3. Finally, we
have a brief conclusion in Section 4.

2. Preliminaries

Below, we introduce some notations and terminology
from [7]. Let z be a string of length n over a finite alpha-
bet �. A character at position i of z is represented with
zi (or z[i]), where 1 ≤ i ≤ n. A substring of z from posi-
tion i to j is indicated as zi, j , i.e., zi, j = zi zi+1 . . . z j , for
1 ≤ i ≤ j ≤ n. For biological sequences, � = {A, C, G, T },
in which A-T and C-G are considered as complementary
base pairs. We use θ(z) to denote an inversion operation
acting on z, resulting in a reverse and complement of z.
For example, θ(A) = T , θ(T) = A, θ(G) = C , θ(C) = G and
θ(C G A) = T C G . In addition, we utilize τ (uv) = vu to rep-
resent a transposition operation to exchange two non-empty
strings u and v . Note that the lengths of u and v are may
be different in this study. For convenience, we call θ and
τ as mutation operations. We also let θi, j(z) = θ(zi, j) for
1 ≤ i ≤ j ≤ n and τi, j,k(z) = zk, j zi,k−1 for 1 ≤ i < k ≤ j ≤ n,
where [i, j] is called a mutation range for θi, j and τi, j,k .
For an integer t , where 1 ≤ t ≤ n, we say that a mutation
operation θi, j or τi, j,k covers t if i ≤ t ≤ j. Given two muta-
tion operations, they are non-overlapping if the intersection
of their mutation ranges is empty. Given a set � of non-
overlapping mutation operations and a string z, let �(z)
be the resulting string after consecutively applying muta-
tion operations in � on z. For example, if � = {τ1,3,2, θ5,5}
and z = T AG AC , then �(z) = AGT AG .

Definition 1 (Non-overlapping inversion and transposition dis-
tance). Given two strings x and y of the same length, the
non-overlapping inversion and transposition distance (sim-
ply called mutation distance) between x and y, denoted
by md(x, y), is defined as the minimum number of non-
overlapping inversion and transposition operations used
to transform x into y. If there does not exist any set of
non-overlapping mutations that converts x into y, then
md(x, y) is infinite. Formally,

md(x, y) =
⎧⎨
⎩

min {|�| : �(x) = y} if ∃� such that
�(x) = y

∞ otherwise

Definition 2 (Two-string consensus problem under mutation
distance).
Input: Two strings x and y of the same length n and a
constant c ≥ 0.
Question: Does there exist a string s∗ such that md(s∗, x) ≤
c and md(s∗, y) ≤ c?

For example, suppose that x = T AG AC and y = T A AC G .
When c = 1, the answer is positive because there exists
s∗ = y such that md(s∗, x) = 1 and md(s∗, y) = 0. However,
when c = 0, the answer is negative, since x �= y and hence
there does not exist any s∗ satisfying both md(s∗, x) = 0
and md(s∗, y) = 0.

3. Our algorithm

In fact, a mutation acting on a string z comprises
several sub-operations, called mutation fragments, each of
which is denoted either by a tuple (i, j, z j) or (i, j, θ(z j)),
where (i, j, z j) (respectively, (i, j, θ(z j))) means that z j
(respectively, complement of z j) is moved into the posi-
tion i in the resulting string obtained when applying the
mutation operation on z. For convenience, we arrange all
possible mutation fragments for z in two mutation tables
Mz

1 and Mz
2, where Mz

1[i, j] = (i, j, θ(z j)) and Mz
2[i, j] =

(i, j, z j) for all 1 ≤ i, j ≤ n. For example, if z = T AG AC ,
then its mutation tables are shown in Fig. 1.

Given a string z and its mutation tables Mz
1 and Mz

2, the
result of an inversion θi, j(z) can be obtained by concate-
nating (j − i + 1) mutation fragments starting at Mz

1[i, j]
and continuing to move in the anti-diagonal direction to
Mz

1[j, i] (see the shaded entries of Mz
1 in Fig. 1 for an ex-

ample). That is, we can decompose θi, j(z) into (j − i +
1) mutation fragments F(θi, j, z, t) for i ≤ t ≤ j, where
F(θi, j, z, t) = (t, i + j − t, θ(zi+ j−t)). In addition, the re-
sult of a transposition τi, j,k(z) can be obtained by con-
catenating the mutation fragments on the following two
paths, one starting at Mz

2[i, k] and continuing to move in
the diagonal direction to Mz

2[i + j − k, j] and the other
beginning at Mz

2[i + j − k + 1, i] and also continuing to
move in the diagonal direction to Mz

2[j, k − 1] (see the
shaded entries of Mz

2 in Fig. 1 for an example). More
clearly, τi, j,k(z) can be decomposed into (j − i + 1) mu-
tation fragments F(τi, j,k, z, t) for i ≤ t ≤ j, where if i ≤
t ≤ i + j − k, then F(τi, j,k, z, t) = (t, k + t − i, zk+t−i); oth-
erwise, F(τi, j,k, z, t) = (t, t − j + k − 1, zt− j+k−1). For the
purpose of brevity, we further let τi, j,k(z, 1) = {(t, k + t − i,

Download	English	Version:

https://daneshyari.com/en/article/6874247

Download	Persian	Version:

https://daneshyari.com/article/6874247

Daneshyari.com

https://daneshyari.com/en/article/6874247
https://daneshyari.com/article/6874247
https://daneshyari.com/

