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The study of fault Hamiltonicity is an important topic in studying the structures 
of interconnection networks. Indeed, many advanced results have been obtained for 
undirected interconnection networks. However, much less is known for the directed 
counterparts. In the note, we consider the fault Hamiltonicity for unidirectional hypercubes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Directed interconnection networks have been studied in 
the area of interconnection networks. Some research pa-
pers in this area include [1–6] and these references include 
many additional references. In particular, Ref. [4] gave an 
application and an architectural model for the studies of 
unidirectional graph topologies as well as a comparison of 
the diameters among many known unidirectional intercon-
nection networks. In addition, Ref. [5] proposed unidirec-
tional hypercubes as the basis for high speed networking. 
However, researchers know less about directed intercon-
nection networks than their undirected counterparts. The 
main reason is that the directed version is usually more 
difficult. Fault Hamiltonicity has attracted a lot of attention 
in the area of interconnection networks. Rather than list-
ing numerous references here, we invite the readers to [7]
for its extensive reference list; moreover Chapters 11–13 
contain many recent results. As an indication of why it is 
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in general more difficult to study Hamiltonicity properties 
for directed graphs even for specified networks, we point 
out that although Cm × Cn is Hamiltonian, the directed 
version is only Hamiltonian for certain cases in which a 
necessary and sufficient condition is given in [8]. Although 
much is known about hypercubes and their various Hamil-
tonicity properties, as far as we know, there are no known 
corresponding results in the directed case. We hope this 
short note will interest researchers to divert some atten-
tion from undirected interconnection networks to their di-
rected counterparts. We aim to write a concise note, so we 
forego most background materials and basic definitions.

Let n ≥ 2. The hypercube Q n has a vertex set consisting
of 2n binary strings of length n, where it is customary to 
denote a binary string of length n by a = an−1an−2 . . .a1a0. 
Moreover, two vertices are adjacent if they differ in ex-
actly one position, where the corresponding edge is an 
i-edge if the position that they differ is i. The unidirec-
tional hypercube U Q n is obtained by orienting the edges 
in Q n . See [5]. Define h(an−1an−2 . . .a1a0) = an−1 + an−2 +
· · ·+a1 +a0. Incidentally, this is called the Hamming weight. 
A vertex is called even if its Hamming weight is even; oth-
erwise it is odd. Given an i-edge between u and v , then 
exactly one of h(u) + i and h(v) + i is even, say h(u) + i; we 
orient the edge from u to v . It is clear that if h(u) is even 
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Fig. 1. U Q 4.

(respectively, odd), then ρ(u) = �n/2� and δ(u) = �n/2�
(respectively, δ(u) = �n/2� and ρ(u) = �n/2�), where ρ(·)
and δ(·) are the in-degree function and out-degree func-
tion, respectively. Moreover, we let ρ(G) and δ(G) repre-
sent the minimum of ρ(·) and δ(·) over all vertices of G , 
respectively. We note that U Q 2 is a directed 4-cycle. Fig. 1
gives U Q 4.

A directed graph is Hamiltonian if it contains a (directed) 
Hamiltonian cycle, that is, a (directed) cycle that contains 
every vertex of the graph. A (directed) Hamiltonian path in a 
graph is a (directed) path that contains every vertex of the 
graph. A directed graph G = (V , E) is k-arc-fault-tolerant-
Hamiltonian if for every F ⊆ E with |F | ≤ k, G − F is Hamil-
tonian. So a graph G is 0-arc-fault-tolerant-Hamiltonian 
corresponds to saying G is Hamiltonian. Clearly the best 
k that we can hope for is min{ρ(G), δ(G)} − 1. An even 
stronger property is to find a Hamiltonian cycle containing 
a prescribed arc. A directed graph G is super Hamiltonian
if G has a Hamiltonian cycle containing e for every arc 
e in G . A directed graph G = (V , E) is super k-arc-fault-
tolerant-Hamiltonian if for every F ⊆ E with |F | ≤ k, G − F
is super Hamiltonian. Thus G is super 0-arc-fault-tolerant-
Hamiltonian is the same as saying G is super Hamiltonian. 
Given that a desirable property for an interconnection net-
work is for it to be regular, it is more interesting to con-
sider U Q n when n is even. Clearly U Q 2r is r-regular. In the 
next section, we present our main result regarding these 
two fault Hamiltonian properties of U Q 2r .

2. Main result

As we have mentioned earlier, we are mainly interested 
in fault tolerant Hamiltonian results for regular graphs. We 
now present our main result.

Theorem 2.1. U Q 2 is both Hamiltonian and super Hamiltonian. 
Let r ≥ 2. Then U Q 2r is (r − 1)-arc-fault-tolerant-Hamiltonian 
and super (r − 2)-arc-fault-tolerant-Hamiltonian.

Proof. The statement regarding U Q 2 is obviously correct. 
It is also easy to check that the result holds for U Q 4. 
We proceed with induction on r. Let r ≥ 3. Let Hij
be the subgraph induced by the vertices of the form 

Fig. 2. Theorem 2.1.

i jan−3 . . .a1a0. Then each Hij is isomorphic to U Q 2r−2. So 
every Hij is (r − 2)-arc-fault-tolerant-Hamiltonian and su-
per (r − 3)-arc-fault-tolerant-Hamiltonian. Moreover, there 
are arcs between Hij and Hst if and only if i j and st dif-
fer in exactly one position; in addition, there are 22r−2

such arcs and exactly 22r−3 of them are directed from Hij
to Hst . These arcs are called cross arcs. We use the nota-
tion uij to denote the vertex i ju where each of i and j is 
a binary digit and u is a binary string of length n − 2.

We first prove that U Q 2r is (r − 1)-arc-fault-tolerant-
Hamiltonian. Let F be a set of arcs in U Q 2r where |F | ≤
r − 1. In fact, without loss of generality, we may assume 
that |F | = r − 1. Let Fij be the elements of F that are arcs 
in Hij and let F M be the elements of F that are cross arcs. 
Since Q n is edge-transitive, we may assume that one of the 
elements in F is a cross arc. Thus |Fij | ≤ r − 2 for every i j. 
Hence every Hij − Fij is Hamiltonian. Without loss of gen-
erality, we may assume that |F00| ≥ |F01|, |F11|, |F10|. Thus 
|F01|, |F11|, |F10| ≤ r − 3. Let C00 be a directed Hamilto-
nian cycle in H00 − F00. There are 22r−3 arcs on C00 of 
the form (u00

1 , v00
1 ) where u00

1 is even and hence v00
1 is 

odd. Such an arc is good if both cross arcs (u00
1 , u01

1 ) and 
(v01

1 , v00
1 ) are not in F . We note that these cross arcs are 

oriented in the correct way as u1 is even and their end-
points differ in the (2r − 2)th position. Since |F M | ≤ r − 1
and 22r−3 > r − 1 as r ≥ 3, such a good arc can be found. 
Now consider H01, we have the arc (v01

1 , u01
1 ). (We note 

that the orientation is correct as u01
1 is odd.) This arc may 

or may not be in F01. (This arc will not be used in our 
construction of a desired Hamiltonian cycle.) In any case, 
we let F ′

01 = F01 − {(v01
1 , u01

1 )}. Thus |F ′
01| ≤ r − 3 and by 

the induction hypothesis, there is a Hamiltonian cycle C01
in H01 − F ′

01 containing (v01
1 , u01

1 ). By the same argument, 
we can find a good arc (u01

2 , v01
2 ) on C01 where u01

2 is odd, 
so the cross arcs (u01

2 , u11
2 ) and (v11

2 , v01
2 ) are not elements 

of F . (Again the orientation of the arcs are correct as u01
2 is 

odd, and u01
2 and u11

2 differ in the (2r − 1)th position.) It is 
now clear how to complete the proof as shown in Fig. 2. 
(A black vertex is an even vertex and a white vertex is an 
odd vertex.)
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