
Information Processing Letters 115 (2015) 562–569

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Self-stabilizing distributed algorithm for local mutual 
inclusion

Hirotsugu Kakugawa 1

Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 November 2013
Received in revised form 27 January 2015
Accepted 28 January 2015
Available online 3 February 2015
Communicated by M. Yamashita

Keywords:
Distributed algorithm
Mutual inclusion
Mutual exclusion
Process synchronization
Self-stabilization

Local mutual inclusion is a process synchronization problem where, for each process, at 
least one of its processes and neighbors must be in the critical section. We propose a self-
stabilizing distributed solution to the local mutual inclusion problem. Convergence time of 
the proposed algorithm is one round under the weakly fair distributed daemon.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The distributed mutual inclusion problem is the com-
plement of the distributed mutual exclusion problem 
[17,16]; unlike mutual exclusion, where at most one pro-
cess is in the critical section (CS), mutual inclusion places 
at least one process in the CS. In [11], a solution for 
only two processes is proposed. This solution involves 
semaphores, which are variables or abstract data types that 
are used by multiple processes for access control.

We propose a self-stabilizing and distributed solution to 
the local mutual inclusion problem. The mutual inclusion 
problem is local if, for each process P , at least one of P and 
its neighbors are in CS. It is global if, at least one process 
in the system is in CS. The global mutual inclusion prob-
lem is a special case of the local mutual inclusion problem 
because they are the same when the network topology is 
complete. Self-stabilization is a class of fault-tolerant al-

E-mail address: kakugawa@ist.osaka-u.ac.jp.
1 This work is supported in part by Grant-in-Aid for Scientific Research 

(C)24500039 of JSPS.

gorithms for transient faults [6,23]. The main motivation 
for studying the distributed local mutual inclusion problem 
is the theoretical formulation of the handover of cluster 
heads in sensor networks. Processes may have to change 
their role (cluster head or ordinary) to equalize energy 
consumption; these changes have to be done in such a way 
that the clustering condition is ensured, i.e., each ordinary 
process is at a distance of at most one cluster head. Sup-
pose a process is in the CS if and only if it is a cluster 
head. In this case, local mutual inclusion maintains a clus-
tering condition; that is, each process is a cluster head or 
at least one of its neighbors is a cluster head. The self-
stabilizing property implies that the proposed solution is 
fault-tolerant to transient faults and adaptive to topology 
changes. Moreover, a global reset is not necessary when a 
distributed system starts.

This paper is organized as follows. In Section 2, we give 
several definitions and problem statements. In Section 3, 
a self-stabilization solution to the local mutual inclusion 
problem is presented. We prove the correctness of this 
proposed algorithm and analyze its performance in Sec-
tion 4. In Section 5, we review related works and discuss 

http://dx.doi.org/10.1016/j.ipl.2015.01.008
0020-0190/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2015.01.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:kakugawa@ist.osaka-u.ac.jp
http://dx.doi.org/10.1016/j.ipl.2015.01.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.01.008&domain=pdf


H. Kakugawa / Information Processing Letters 115 (2015) 562–569 563

our results. In Section 6, we conclude this paper and dis-
cuss future research.

2. Preliminaries

Let n be the number of processes, V = (P1, P2, . . . , Pn)

be a set of processes, and E ⊆ V × V be a set of com-
munication links in a distributed system. The topology of 
the distributed system can be represented as the graph 
G = (V , E). Assume that G is connected, simple, and undi-
rected. For each communication link (Pi, P j) ∈ E , we say 
that P j is a neighbor of Pi . Since a communication link 
is bidirectional, (Pi, P j) ∈ E if and only if (P j, Pi) ∈ E for 
each Pi, P j ∈ V . The set of neighbors of Pi is denoted 
by Ni , and a local variable x at process Pi is denoted by xi . 
A set of local variables defines the local state of a process. 
Let Q i be the local state (a vector of all local variables) of 
process Pi ∈ V . A vector of local states (Q 1, Q 2, . . . , Q n) of 
all processes forms a configuration (global state) of a dis-
tributed system; the set of all configurations is denoted 
by Γ .

An algorithm of each process Pi is given by a finite set 
of guarded commands:

Rule 1: if Grd1 then Act1
Rule 2: if Grd2 then Act2

.

.

.

Rule L: if GrdL then ActL .

Each Grd� (� = 1, 2, . . . , L) is called a guard, and it is 
a predicate on Pi ’s local state and the local states of its 
neighbors. For communication model, we assume that each 
process can read the local state of its neighbors, which is 
called the state-reading model. Although a process can read 
local states of neighbors, it can only update its local state. 
We say that Pi is enabled in configuration γ if and only if 
at least one guard of Pi is true in γ . If Pi is not enabled, 
we say that Pi is disabled.

Each Act� is called an action or move, which updates the 
local state of Pi . The next local state is computed from the 
current local state of Pi and those of its neighbors.

An atomic step of each process Pi consists of the fol-
lowing three internal sub-steps known as the composite 
atomicity model: read local states of neighbors and evalu-
ate guards, execute an action that is associated with a true 
guard (if any exist), and update its local state.

For the execution model, we assume the distributed 
daemon, which is often assumed in the literature of self-
stabilizing distributed algorithms. At each step, the dis-
tributed daemon arbitrarily selects a non-empty subset of 
enabled processes, and the selected processes execute their 
actions simultaneously. We also assume the distributed 
daemon is weakly fair; that is, a process which is contin-
uously enabled is eventually selected to take an action by 
the distributed daemon.

2.1. Mutual inclusion

Assume that each process Pi ∈ V virtually maintains a 
local variable statei ∈ {InCS, NonCS}, and assume the initial 

value of statei is InCS. The behavior of each process Pi is 
as follows. Note that we assume that Pi eventually invokes 
Entry-Sequence when it is in the NonCS state.

/∗ InCS ∗/

while true {
Exit-Sequence;
/∗ NonCS ∗/

Entry-Sequence;
/∗ InCS ∗/

}

Definition 1 (Local mutual inclusion). A protocol P solves 
the local mutual inclusion problem if and only if the fol-
lowing two conditions hold:

Safety: For each process Pi ∈ V , at least one Pi , or its 
neighbor P j ∈ Ni , is in the InCS state.
Liveness: Each process Pi ∈ V enters the NonCS and
InCS states alternately infinitely often.

The goal of local mutual inclusion is to design a proto-
col for Exit-Sequence and Entry-Sequence that meets the 
definition. Note that local mutual inclusion defined above 
is local in the sense that for each Pi , at least one process 
among Ni ∪ {Pi} must be in the InCS state. In the special 
case that G is a complete network, this problem is referred 
to as global mutual inclusion. In this paper, we propose an 
algorithm for local mutual inclusion.

2.2. Self-stabilization

The self-stabilization property is defined as the ability 
to converge to a correct system operation in finite time 
from an arbitrary initial configuration. Let S = (Γ, F , →), 
where Γ is the finite set of all configurations, F is the 
predicate on a sequence of configurations,2 and → is a 
relation on Γ × Γ . S = (Γ, F , →) can be viewed as a tran-
sition system defined by a given network topology and 
algorithm. For any configuration γ ∈ Γ , let γ ′ ∈ Γ be any 
configuration that follows γ by a single step of execution. 
We denote this transition relation by γ → γ ′ . We say that 
γ

∗→ γ ′ if and only if γ0(= γ ) → γ1, γ1 → γ2, . . . , and 
γt−1 → γt(= γ ′) for some t ≥ 0.

Definition 2. For any configuration γ0, a computation e(γ0)

starting from γ0 is a maximal (possibly infinite) sequence 
of configurations e(γ0) = γ0, γ1, γ2, . . . , where γt → γt+1
for each t ≥ 0. A computation is said to be maximal if (1) it 
is infinite, or (2) it is finite and no process is enabled in the 
last configuration.

If the initial configuration γ0 is clear from the context, 
the computation is denoted by e instead of e(γ0).

2 For example, for a token circulation algorithm, F must be true when 
a token is circulated, and there is only one token. Hence, for such a non-
silent algorithm, the predicate F must be defined over a sequence of 
configurations rather than a single configuration.



Download English Version:

https://daneshyari.com/en/article/6874254

Download Persian Version:

https://daneshyari.com/article/6874254

Daneshyari.com

https://daneshyari.com/en/article/6874254
https://daneshyari.com/article/6874254
https://daneshyari.com

