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We give exact and approximation algorithms for computing the Gromov hyperbolicity of an 
n-point discrete metric space. We observe that computing the Gromov hyperbolicity from 
a fixed base-point reduces to a (max,min) matrix product. Hence, using the (max,min) 
matrix product algorithm by Duan and Pettie, the fixed base-point hyperbolicity can be 
determined in O (n2.69) time. It follows that the Gromov hyperbolicity can be computed 
in O (n3.69) time, and a 2-approximation can be found in O (n2.69) time. We also give 
a (2 log2 n)-approximation algorithm that runs in O (n2) time, based on a tree-metric 
embedding by Gromov. We also show that hyperbolicity at a fixed base-point cannot be 
computed in O (n2.05) time, unless there exists a faster algorithm for (max,min) matrix 
multiplication than currently known.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Gromov introduced a notion of metric-space hyperbol-
icity [2,9] using a simple four point condition. (See Sec-
tion 1.1.) This definition is very attractive from a com-
puter scientist point of view as the hyperbolicity of a finite 
metric space can be easily computed by brute force, by 
simply checking the four point condition at each quadru-
ple of points. However, this approach takes �(n4) time 
for an n-point metric space, which makes it impractical 
for some applications to networking [6]. Knowing the hy-
perbolicity is important, as the running time and space 
requirements of previous algorithms designed for Gromov 
hyperbolic spaces are often analyzed in terms of their Gro-
mov hyperbolicity [4,5,10]. So far, it seems that no better 
algorithm than brute force was known for computing the 
Gromov hyperbolicity [3]. In this note, we give faster ex-
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act and approximation algorithms based on previous work 
on (max-min) matrix products by Duan and Pettie [7], and 
the tree-metric embedding by Gromov [9].

The exponent of matrix multiplication μ is the infimum 
of the real numbers ω > 0 such that two n × n real ma-
trices can be multiplied in O (nω) time, exact arithmetic 
operations being performed in one step [11]. Currently, 
μ is known to be less than 2.373 [12]. In the following, 
ω is a real number such that we can multiply two n × n
real matrices in O (nω) time.

Our algorithm for computing the Gromov hyperbol-
icity runs in O (n(5+ω)/2) time, which is O (n3.69). (See 
Section 2.1.) For a fixed base-point, this improves to 
O (n(3+ω)/2), which also yields a 2-factor approximation 
for the general case within the same time bound. (See Sec-
tion 2.2.) We also give a quadratic-time (2 log2 n)-approxi-
mation algorithm. (See Section 2.3.) Finally, we show that 
hyperbolicity at a fixed base-point cannot be computed 
in time O (n3(ω−1)/2) = O (n2.05), unless (max,min) matrix 
product can be computed in time O (nτ ) for τ < (3 +ω)/2. 
(See Section 3.) The currently best known algorithm runs 
in O (n(3+ω)/2) time [7].
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1.1. Gromov hyperbolic spaces

An introduction to Gromov hyperbolic spaces can be 
found in the article by Bonk and Schramm [2], and in the 
book by Ghys and de la Harpe [8]. Here we briefly present 
some definitions and facts that will be needed in this note.

A metric space (M, d) is said to be δ-hyperbolic for 
some δ � 0 if it obeys the so-called four point condition: 
For any x, y, z, t ∈ M , the largest two distance sums among 
d(x, y) + d(z, t), d(x, z) + d(y, t), and d(x, t) + d(y, z), differ 
by at most 2δ. The Gromov hyperbolicity δ∗ of (M, d) is the 
smallest δ∗ � 0 such that (M, d) is δ∗-hyperbolic.

For any x, y, r ∈ M , the Gromov product of x, y at r is 
defined as

(x|y)r = 1

2
(d(x, r) + d(r, y) − d(x, y)) .

The point r is called the base point. Gromov hyperbolic-
ity can also be defined in terms of the Gromov product, 
instead of the four point condition above. The two defini-
tions are equivalent, with the same values of δ and δ∗ . So 
a metric space (M, d) is δ-hyperbolic if and only if, for any 
x, y, z, r ∈ M

(x|z)r � min{(x|y)r, (y|z)r} − δ.

The Gromov hyperbolicity δ∗ is the smallest value of δ that 
satisfies the above property. In other words,

δ∗ = max
x,y,z,r

{min{(x|y)r, (y|z)r} − (x|z)r} .

The hyperbolicity δr at base point r is defined as

δr = max
x,y,z

{min{(x|y)r, (y|z)r} − (x|z)r} . (1)

Hence, we have

δ∗ = max
r

δr . (2)

2. Algorithms

In this section, we consider a discrete metric space 
(M, d) with n elements, that we denote x1, . . . , xn . Our 
goal is to compute exactly, or approximately, its hyperbol-
icity δ∗ , or its hyperbolicity δr at a base point r.

2.1. Exact algorithms

The (max,min)-product A ⊗ B of two real matrices A, B
is defined as follows:

(A ⊗ B)i j = max
k

min{Aik, Bkj}.

Duan and Pettie [7] gave an O (n(3+ω)/2)-time algorithm 
for computing the (max,min)-product of two n × n matri-
ces.

Let r be a fixed base-point. By Eq. (1), if A is the matrix 
defined by Aij = (xi |x j)r for any i, j, then δr is simply the 
largest coefficient in (A ⊗ A) − A. So we can compute δr
in O (n(3+ω)/2) time. Maximizing over all values of r, we 
can compute the hyperbolicity δ∗ in O (n(5+ω)/2) time, by 
Eq. (2).

2.2. Factor-2 approximation

The hyperbolicity δr with respect to any base-point is 
known to be a 2-approximation of the hyperbolicity δ∗ [2]. 
More precisely, we have δr � δ∗ � 2δr . So, using the algo-
rithm of Section 2.1, we can pick an arbitrary base-point 
r and compute δr in O (n(3+ω)/2) time, which gives us a 
2-approximation of δ∗ .

2.3. Logarithmic factor approximation

Gromov [9] (see also the article by Chepoi et al. [4, The-
orem 1] and the book by Ghys and de la Harpe [8, Chap-
ter 2]) showed that any δ-hyperbolic metric space (M, d)

can be embedded into a weighted tree T with an additive 
error 2δ log2 n, and this tree can be constructed in time 
O (n2). In particular, if we denote by dT the metric corre-
sponding to such a tree T , then

d(a,b) − 2δ∗ log2 n � dT (a,b) � d(a,b) for any a,b ∈ M.

(3)

This construction can be performed without prior knowl-
edge of δ∗ .

We compute D = maxa,b∈M d(a, b) − dT (a, b) in time 
O (n2). We claim that:

δ∗ � D � 2δ∗ log2 n. (4)

So we obtain a (2 log2 n)-approximation D of δ∗ in time 
O (n2).

We still need to prove the double inequality (4). It fol-
lows from Eq. (3) that d(a, b) −dT (a, b) � 2δ∗ log2 n for any 
a, b, and thus D � 2δ∗ log2 n. In the following, we prove the 
other inequality.

For any x, y, z, t , we denote by δ(x, y, z, t) the dif-
ference between the two largest distance sums among 
d(x, y) + d(z, t), d(x, z) + d(y, t), and d(x, t) + d(y, z). 
Thus, if for instance d(x, y) + d(z, t) � d(x, z) + d(y, t) �
d(x, t) + d(y, z), we have δ(x, y, z, t) = d(x, y) + d(z, t) −
d(x, z) − d(y, t). We also need to introduce the differ-
ence δT (x, y, z, t) between the two largest sums among 
dT (x, y) +dT (z, t), dT (x, z) +dT (y, t), and dT (x, t) +dT (y, z).

For any a, b ∈ M , we have d(a, b) − D � dT (a, b) �
d(a, b), so δ(x, y, z, t) − δT (x, y, z, t) � 2D , because in the 
worst case, the largest sum with respect to d is the same 
as the largest sum with respect to dT , and the second 
largest sum with respect to dT is equal to the second 
largest sum with respect to d minus 2D . But by construc-
tion, dT is a tree metric [4], so δT (x, y, z, t) = 0 for any 
x, y, z, t . Therefore δ(x, y, z, t) � 2D for any x, y, z, t , which 
means that δ∗ � D .

3. Conditional lower bounds

We show that computing hyperbolicity at a fixed base-
point is intimately connected with (max,min)-product. 
From the previous section, any improvement on the com-
plexity of (max,min)-product yields an improvement on 
our algorithm to compute hyperbolicity. We show that a 
partial converse holds: Any improvement on the complex-
ity of computing hyperbolicity at a fixed base-point below 
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