Computing the Gromov hyperbolicity of a discrete metric space

Hervé Fournier ${ }^{\text {a }}$, Anas Ismail ${ }^{\text {b }}$, Antoine Vigneron ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Univ Paris Diderot, Sorbonne Paris Cité, Institut de Mathématiques de Jussieu, UMR 7586 CNRS, 75205 Paris, France
${ }^{\mathrm{b}}$ King Abdullah University of Science and Technology (KAUST), Visual Computing Center, Thuwal 23955-6900, Saudi Arabia

ARTICLE INFO

Article history:

Received 4 September 2013
Received in revised form 12 May 2014
Accepted 8 February 2015
Available online 12 February 2015
Communicated by R. Uehara

Keywords:

Algorithms design and analysis
Approximation algorithms
Discrete metric space
Hyperbolic space
(max,min) matrix product

Abstract

We give exact and approximation algorithms for computing the Gromov hyperbolicity of an n-point discrete metric space. We observe that computing the Gromov hyperbolicity from a fixed base-point reduces to a (max,min) matrix product. Hence, using the (max,min) matrix product algorithm by Duan and Pettie, the fixed base-point hyperbolicity can be determined in $O\left(n^{2.69}\right)$ time. It follows that the Gromov hyperbolicity can be computed in $O\left(n^{3.69}\right)$ time, and a 2-approximation can be found in $O\left(n^{2.69}\right)$ time. We also give a $\left(2 \log _{2} n\right)$-approximation algorithm that runs in $O\left(n^{2}\right)$ time, based on a tree-metric embedding by Gromov. We also show that hyperbolicity at a fixed base-point cannot be computed in $O\left(n^{2.05}\right)$ time, unless there exists a faster algorithm for (max,min) matrix multiplication than currently known.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Gromov introduced a notion of metric-space hyperbolicity $[2,9]$ using a simple four point condition. (See Section 1.1.) This definition is very attractive from a computer scientist point of view as the hyperbolicity of a finite metric space can be easily computed by brute force, by simply checking the four point condition at each quadruple of points. However, this approach takes $\Theta\left(n^{4}\right)$ time for an n-point metric space, which makes it impractical for some applications to networking [6]. Knowing the hyperbolicity is important, as the running time and space requirements of previous algorithms designed for Gromov hyperbolic spaces are often analyzed in terms of their Gromov hyperbolicity [4,5,10]. So far, it seems that no better algorithm than brute force was known for computing the Gromov hyperbolicity [3]. In this note, we give faster ex-

[^0]act and approximation algorithms based on previous work on (max-min) matrix products by Duan and Pettie [7], and the tree-metric embedding by Gromov [9].

The exponent of matrix multiplication μ is the infimum of the real numbers $\omega>0$ such that two $n \times n$ real matrices can be multiplied in $O\left(n^{\omega}\right)$ time, exact arithmetic operations being performed in one step [11]. Currently, μ is known to be less than 2.373 [12]. In the following, ω is a real number such that we can multiply two $n \times n$ real matrices in $O\left(n^{\omega}\right)$ time.

Our algorithm for computing the Gromov hyperbolicity runs in $O\left(n^{(5+\omega) / 2}\right)$ time, which is $O\left(n^{3.69}\right)$. (See Section 2.1.) For a fixed base-point, this improves to $O\left(n^{(3+\omega) / 2}\right)$, which also yields a 2 -factor approximation for the general case within the same time bound. (See Section 2.2.) We also give a quadratic-time $\left(2 \log _{2} n\right)$-approximation algorithm. (See Section 2.3.) Finally, we show that hyperbolicity at a fixed base-point cannot be computed in time $O\left(n^{3(\omega-1) / 2}\right)=O\left(n^{2.05}\right)$, unless (max,min) matrix product can be computed in time $O\left(n^{\tau}\right)$ for $\tau<(3+\omega) / 2$. (See Section 3.) The currently best known algorithm runs in $O\left(n^{(3+\omega) / 2}\right)$ time [7].

1.1. Gromov hyperbolic spaces

An introduction to Gromov hyperbolic spaces can be found in the article by Bonk and Schramm [2], and in the book by Ghys and de la Harpe [8]. Here we briefly present some definitions and facts that will be needed in this note.

A metric space (M, d) is said to be δ-hyperbolic for some $\delta \geqslant 0$ if it obeys the so-called four point condition: For any $x, y, z, t \in M$, the largest two distance sums among $d(x, y)+d(z, t), d(x, z)+d(y, t)$, and $d(x, t)+d(y, z)$, differ by at most 2δ. The Gromov hyperbolicity δ^{*} of (M, d) is the smallest $\delta^{*} \geqslant 0$ such that (M, d) is δ^{*}-hyperbolic.

For any $x, y, r \in M$, the Gromov product of x, y at r is defined as
$(x \mid y)_{r}=\frac{1}{2}(d(x, r)+d(r, y)-d(x, y))$.
The point r is called the base point. Gromov hyperbolicity can also be defined in terms of the Gromov product, instead of the four point condition above. The two definitions are equivalent, with the same values of δ and δ^{*}. So a metric space (M, d) is δ-hyperbolic if and only if, for any $x, y, z, r \in M$
$(x \mid z)_{r} \geqslant \min \left\{(x \mid y)_{r},(y \mid z)_{r}\right\}-\delta$.
The Gromov hyperbolicity δ^{*} is the smallest value of δ that satisfies the above property. In other words,
$\delta^{*}=\max _{x, y, z, r}\left\{\min \left\{(x \mid y)_{r},(y \mid z)_{r}\right\}-(x \mid z)_{r}\right\}$.
The hyperbolicity δ_{r} at base point r is defined as
$\delta_{r}=\max _{x, y, z}\left\{\min \left\{(x \mid y)_{r},(y \mid z)_{r}\right\}-(x \mid z)_{r}\right\}$.
Hence, we have
$\delta^{*}=\max _{r} \delta_{r}$.

2. Algorithms

In this section, we consider a discrete metric space (M, d) with n elements, that we denote x_{1}, \ldots, x_{n}. Our goal is to compute exactly, or approximately, its hyperbolicity δ^{*}, or its hyperbolicity δ_{r} at a base point r.

2.1. Exact algorithms

The (max,min)-product $A \otimes B$ of two real matrices A, B is defined as follows:
$(A \otimes B)_{i j}=\max _{k} \min \left\{A_{i k}, B_{k j}\right\}$.
Duan and Pettie [7] gave an $O\left(n^{(3+\omega) / 2}\right)$-time algorithm for computing the (max,min)-product of two $n \times n$ matrices.

Let r be a fixed base-point. By Eq. (1), if A is the matrix defined by $A_{i j}=\left(x_{i} \mid x_{j}\right)_{r}$ for any i, j, then δ_{r} is simply the largest coefficient in $(A \otimes A)-A$. So we can compute δ_{r} in $O\left(n^{(3+\omega) / 2}\right)$ time. Maximizing over all values of r, we can compute the hyperbolicity δ^{*} in $O\left(n^{(5+\omega) / 2}\right)$ time, by Eq. (2).

2.2. Factor-2 approximation

The hyperbolicity δ_{r} with respect to any base-point is known to be a 2-approximation of the hyperbolicity δ^{*} [2]. More precisely, we have $\delta_{r} \leqslant \delta^{*} \leqslant 2 \delta_{r}$. So, using the algorithm of Section 2.1, we can pick an arbitrary base-point r and compute δ_{r} in $O\left(n^{(3+\omega) / 2}\right)$ time, which gives us a 2-approximation of δ^{*}.

2.3. Logarithmic factor approximation

Gromov [9] (see also the article by Chepoi et al. [4, Theorem 1] and the book by Ghys and de la Harpe [8, Chapter 2]) showed that any δ-hyperbolic metric space (M, d) can be embedded into a weighted tree T with an additive error $2 \delta \log _{2} n$, and this tree can be constructed in time $O\left(n^{2}\right)$. In particular, if we denote by d_{T} the metric corresponding to such a tree T, then
$d(a, b)-2 \delta^{*} \log _{2} n \leqslant d_{T}(a, b) \leqslant d(a, b)$ for any $a, b \in M$.

This construction can be performed without prior knowledge of δ^{*}.

We compute $D=\max _{a, b \in M} d(a, b)-d_{T}(a, b)$ in time $O\left(n^{2}\right)$. We claim that:
$\delta^{*} \leqslant D \leqslant 2 \delta^{*} \log _{2} n$.
So we obtain a $\left(2 \log _{2} n\right)$-approximation D of δ^{*} in time $O\left(n^{2}\right)$.

We still need to prove the double inequality (4). It follows from Eq. (3) that $d(a, b)-d_{T}(a, b) \leqslant 2 \delta^{*} \log _{2} n$ for any a, b, and thus $D \leqslant 2 \delta^{*} \log _{2} n$. In the following, we prove the other inequality.

For any x, y, z, t, we denote by $\delta(x, y, z, t)$ the difference between the two largest distance sums among $d(x, y)+d(z, t), d(x, z)+d(y, t)$, and $d(x, t)+d(y, z)$. Thus, if for instance $d(x, y)+d(z, t) \geqslant d(x, z)+d(y, t) \geqslant$ $d(x, t)+d(y, z)$, we have $\delta(x, y, z, t)=d(x, y)+d(z, t)-$ $d(x, z)-d(y, t)$. We also need to introduce the difference $\delta_{T}(x, y, z, t)$ between the two largest sums among $d_{T}(x, y)+d_{T}(z, t), d_{T}(x, z)+d_{T}(y, t)$, and $d_{T}(x, t)+d_{T}(y, z)$.

For any $a, b \in M$, we have $d(a, b)-D \leqslant d_{T}(a, b) \leqslant$ $d(a, b)$, so $\delta(x, y, z, t)-\delta_{T}(x, y, z, t) \leqslant 2 D$, because in the worst case, the largest sum with respect to d is the same as the largest sum with respect to d_{T}, and the second largest sum with respect to d_{T} is equal to the second largest sum with respect to d minus $2 D$. But by construction, d_{T} is a tree metric [4], so $\delta_{T}(x, y, z, t)=0$ for any x, y, z, t. Therefore $\delta(x, y, z, t) \leqslant 2 D$ for any x, y, z, t, which means that $\delta^{*} \leqslant D$.

3. Conditional lower bounds

We show that computing hyperbolicity at a fixed basepoint is intimately connected with (max,min)-product. From the previous section, any improvement on the complexity of (max,min)-product yields an improvement on our algorithm to compute hyperbolicity. We show that a partial converse holds: Any improvement on the complexity of computing hyperbolicity at a fixed base-point below

https://daneshyari.com/en/article/6874256

Download Persian Version:

https://daneshyari.com/article/6874256

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: fournier@math.univ-paris-diderot.fr (H. Fournier), anas.ismail@kaust.edu.sa (A. Ismail), antoine.vigneron@kaust.edu.sa (A. Vigneron).

