
Information Processing Letters 115 (2015) 643–647

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Longest common substrings with k mismatches

Tomas Flouri a, Emanuele Giaquinta b,∗, Kassian Kobert a, Esko Ukkonen c

a Heidelberg Institute for Theoretical Studies, Germany
b Department of Computer Science, Aalto University, Finland
c Department of Computer Science, University of Helsinki, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 September 2014
Received in revised form 16 March 2015
Accepted 16 March 2015
Available online 20 March 2015
Communicated by Ł. Kowalik

Keywords:
Combinatorial problems
String algorithms
Hamming distance
Longest common substring

The longest common substring with k-mismatches problem is to find, given two strings
S1 and S2, a longest substring A1 of S1 and A2 of S2 such that the Hamming distance
between A1 and A2 is ≤ k. We introduce a practical O (nm) time and O (1) space solution
for this problem, where n and m are the lengths of S1 and S2, respectively. This algorithm
can also be used to compute the matching statistics with k-mismatches of S1 and S2 in
O (nm) time and O (m) space. Moreover, we also present a theoretical solution for the k = 1
case which runs in O (n log m) time, assuming m ≤ n, and uses O (m) space, improving over
the existing O (nm) time and O (m) space bound of Babenko and Starikovskaya [1].

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper we study the longest common substring
(or factor) with k-mismatches problem (k-LCF for short1)
which consists in finding the longest common substring
of two strings S1 and S2, while allowing for at most k
mismatches, i.e., the Hamming distance between the two
substrings is ≤ k. This problem is a generalization of the
Longest Common Substring problem [2–4] and is similar to
the threshold all-against-all problem defined by Gusfield [2]
and to the local alignment problem of biological sequence
analysis. In the threshold all-against-all problem the goal
is to find all the pairs of substrings of S1 and S2 such
that the corresponding edit distance is less than a given
number d. The difference in the k-LCF problem is that the
distance used is the Hamming distance rather than the
edit distance, and that we are interested in the pairs of
substrings of maximal length only. In the local alignment

* Corresponding author.
E-mail address: emanuele.giaquinta@aalto.fi (E. Giaquinta).

1 We use the k-LCF abbreviation as LCS usually refers to the Longest
Common Subsequence problem.

problem, which can be solved in O (|S1| · |S2|) time using
the Smith–Waterman algorithm [5], the goal is to compute
a pair of substrings of S1 and S2 such that the correspond-
ing similarity, according to a suitable scoring function, is
maximum over all the pairs of substrings. In particular, if
the scoring function is such that the score of a match is 1,
the score of a mismatch is 0 and gaps are not allowed, a
solution of the local alignment problem is comparable to
one of the k-LCF problem, with the difference that there is
no bound on the number of mismatches.

Babenko and Starikovskaya [1] studied the case of 1
mismatch only and presented an algorithm for the 1-LCF
problem which runs in O (|S1| · |S2|) time. A closely related
problem is the one of computing the matching statistics
with k mismatches. The matching statistics, introduced by
Chang and Lawler [6] for the approximate string match-
ing problem, is an array ms of |S2| integers such that ms[i]
is the length of the longest substring of S2 that starts at
position i and matches exactly some substring of S1, for
i = 0, . . . , |S2| − 1. A natural generalization is obtained by
allowing the matching to be approximate, with respect to
the Hamming distance. Recently, Leimeister and Morgen-
stern [7] presented a greedy heuristic for the computation
of the matching statistics with k mismatches, which runs

http://dx.doi.org/10.1016/j.ipl.2015.03.006
0020-0190/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ipl.2015.03.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://creativecommons.org/licenses/by/4.0/
mailto:emanuele.giaquinta@aalto.fi
http://dx.doi.org/10.1016/j.ipl.2015.03.006
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.03.006&domain=pdf

644 T. Flouri et al. / Information Processing Letters 115 (2015) 643–647

in O (|S1| · k · z) time, where z is the maximum number
of occurrences in S2 of a string of maximal length which
occurs in both S1 and S2.

In this paper we present two novel contributions. Our
first result is an efficient algorithm for the k-LCF problem
which runs in time O (|S1| · |S2|) and only requires a con-
stant amount of space. This algorithm can also be used to
compute the matching statistics with k mismatches with
no overhead in the time complexity, i.e., in O (|S1| · |S2|)
time, and using O (|S2|) space. Our second result is an al-
gorithm for the 1-LCF problem, i.e., for the k = 1 case. We
show how to solve this instance in a more time efficient
manner by using results from Crochemore et al. [8] for
finding the longest generalized repeat(s) with one block of
k adjacent don’t care symbols. Assuming |S2| ≤ |S1|, our
algorithm takes time O (|S1| log |S2|), improving over the
previous bound of O (|S1| · |S2|).

2. Basic definitions

Let � be a finite alphabet of symbols and let �∗ be
the set of strings over �. Given a string S ∈ �∗ , we de-
note by |S| the length of S and by S[i] the i-th symbol
of S , for 0 ≤ i < |S|. Given two strings S and S ′ , S ′ is
a substring of S if there are indices 0 ≤ i ≤ j < |S| such
that S ′ = S[i]...S[j]. If i = 0 (j = |S| − 1) then S ′ is a
prefix (suffix) of S . We denote by S[i.. j] the substring
of S starting at position i and ending at position j. For
i > j we obtain the empty string ε. Finally, we denote by
Sr = S[|S| − 1]S[|S| − 2] . . . S[0] the reverse of the string S .

The suffix tree T (S) of a string S is a rooted directed
tree with |S ′| leaves and edge labels over (� ∪ {$})∗ \ {ε},
where $ /∈ � and S ′ = S$. Each internal node has at least
two children and is such that the edge labels of the chil-
dren have different first symbols. For each leaf i, the con-
catenation of the edge labels on the path from the root to
leaf i is equal to S ′[i..|S ′| −1]. Assuming a constant size al-
phabet, the suffix tree can be built in O (|S|) time [2]. For
any node u in T (S), depth(u) denotes the length of the
string labeling the path from the root to u. For any pair
of nodes u, v in T (S), LCA(u, v) denotes the lowest com-
mon ancestor of u and v , i.e., the deepest node in T (S)

that is ancestor of both u and v . The suffix tree can be
preprocessed in O (|S|) time so as to answer LCA queries
in constant time [9]. We denote by B(S) the binary suf-
fix tree obtained by replacing each node u in T (S) with
out-degree at least 2 with a binary tree with d − 1 inter-
nal nodes (whose depth values are equal to depth(u)) and
d − 2 internal edges, where the d leaves are the d children
of u. The binary suffix tree can be built in O (|S|) time [8].
The generalized suffix tree T (S1, S2) of two strings S1
and S2 is the suffix tree built over S ′ = S1$1 S2$2, where
$1, $2 /∈ �, such that the leaves are numbered with a pair
(s-index) and for each leaf (j, l) the concatenation of the
edge labels on the path from the root to the leaf is equal
to S j[l..|S j| − 1]$ j . The index of a leaf (j, l) is the starting
position of S j[l..|S j | − 1]$ j in S1$1 S2$2. We use the nota-
tion B(S1, S2) to denote the binary generalized suffix tree
of S1 and S2.

3. The longest common substring with k mismatches
problem

Let S1 and S2 be two strings with n = |S1|, m = |S2|.
W.l.o.g. we assume that n ≥ m. Given an integer k, let
φ(i, j) be the length of the longest substring of S1 and
S2 ending at position i and j, respectively, such that the
two substrings have Hamming distance at most k. For-
mally, φ(i, j) is equal to the largest integer l ≤ min(i, j) +1
such that

|{0 ≤ h ≤ l − 1 | S1[i − h] �= S2[j − h]}| ≤ k ,

for 0 ≤ i < n, 0 ≤ j < m. The longest common substring with
k-mismatches problem consists in, given two strings S1 and
S2 and an integer k, finding the length of the longest sub-
strings of S1 and S2 with Hamming distance at most k, i.e.,
maxi, j φ(i, j).

4. A practical algorithm for arbitrary k

In this section we present a practical algorithm for the
k-LCF problem. By definition, φ(i, j) is also the length of
the longest suffixes of S1[0..i] and S2[0.. j] with Ham-
ming distance at most k. Our algorithm computes all the
values φ(i, j) based on this alternative formulation. The
idea is to iterate over the φ matrix diagonal-wise and
compute, for a fixed (i, j) ∈ {(0, 0), (0, 1), . . . , (0, m − 1)} ∪
{(1, 0), (2, 0), . . . , (n − 1, 0)}, the values φ(i + p, j + p), for
0 ≤ p < min(n − i, m − j), i.e., the diagonal starting at (i, j),
in O (m) time. Let Q be an (empty) queue data structure
and s = 0, for a given pair (i, j). The algorithm iterates over
p maintaining the invariant that p − s is the length of the
longest common suffix of S1[i..i + p − 1] and S2[j.. j +
p − 1] up to k-mismatches, i.e., p − s = φ(i + p − 1,

j + p − 1), and that Q contains exactly the positions in
S1 of the mismatches between S1[i + s..i + p − 1] and
S2[j + s.. j + p −1] with the order of elements in the queue
matching their natural order.

At the beginning the invariant holds since Q is empty,
p −s = 0 and S1[i + s..i + p − 1] = S2[j + s.. j + p − 1] = ε.
Suppose that the invariant holds up to position p. If
S1[i + p] = S2[j + p] then the invariant trivially holds also
for p + 1 with s′ = s and Q ′ = Q . Otherwise, we have
a mismatch between S1[i + p] and S2[j + p]. If |Q | < k,
then the invariant also holds for p + 1 with s′ = s and
Q ′ equal to Q after an enqueue(Q , p) operation. In-
stead, if |Q | = k, the pair of suffixes S1[i + r..i + p] and
S2[j + r.. j + p], for r = s, . . . , min Q , match with k + 1
mismatches and r = min Q + 1 is the minimum position
for which the corresponding suffixes match with k mis-
matches. Hence, in this case the invariant also holds for
p + 1 with s′ = min Q + 1 and Q ′ equal to Q after a de-

queue operation followed by an enqueue(Q , p) operation.
The algorithm maintains the largest length found up to

the current iteration and the starting positions of the cor-
responding substrings in S1 and S2, such that the position
in S1 is minimal, in three integers �, r1, and r2. Each time
p − s > � it updates their values accordingly. The code of
the algorithm is shown in Fig. 1. The time complexity of
one iteration of the algorithm is O (1) if the queue oper-
ations take constant time, which yields O (m) time for a

Download English Version:

https://daneshyari.com/en/article/6874271

Download Persian Version:

https://daneshyari.com/article/6874271

Daneshyari.com

https://daneshyari.com/en/article/6874271
https://daneshyari.com/article/6874271
https://daneshyari.com

