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Given a directed graph G and a threshold L(r) for each node r, the rule of deterministic
threshold cascading is that a node r fails if and only if it has at least L(r) failed in-
neighbors. The cascading failure minimization problem is to find at most k edges to delete,
such that the number of failed nodes is minimized. We prove an n1−ε inapproximability
result for the general case and a 1

2 nε inapproximability result for the special case with the
maximum threshold of 1.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Cascading failures are ubiquitous in various types of
networks. For example, bankruptcies of several banks can
shock other banks through a financial network and lead to
a global financial crisis [1]. The spread of cascading fail-
ures is highly relevant to the topology of the propagation
network [2]. There are several methods, such as blocking
edges and vaccinating nodes, which can modify networks
more resilient to cascading failures. This paper focuses on
minimizing the number of cascading failures by deleting a
bounded number of edges.

In this paper, we use the concept of deterministic thresh-
old to model the cascading processes in a network [2,3].
Let G = 〈V , E, L〉 be a directed graph with thresholds,
where V is a set of nodes, E ⊆ V × V is a set of di-
rected edges and L : V → N is a threshold function map-
ping each node to a nonnegative integer. We define the
maximum threshold Lmax = maxr∈V L(r). The rule of deter-
ministic threshold cascading is that a node r fails if and
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only if it has at least L(r) failed in-neighbors. At time 0,
a cascading process is triggered by nodes with thresholds
of 0 (initial failed nodes). At time t , every node r checks
whether it has at least L(r) failed in-neighbors. If so, the
node r will fail. The state of a node can only switch from
alive to failed, but cannot switch from failed to alive. The
process stops at time t if and only if there are no new
failed nodes. We use Φ(V , E, L) to denote the set of failed
nodes at the end of a cascading process. It can be proved
that Φ is uniquely determined. We define the cascading
failure minimization (CFM) problem as follows.

Problem 1 (Cascading failure minimization). Given a nonneg-
ative integer k (budget) and a directed graph with thresh-
olds G = 〈V , E, L〉, find at most k edges to delete, such that
the number of failed nodes is minimized. That is,

min
E ′⊆E

∣
∣Φ

(
V , E − E ′, L

)∣∣

s.t. |E ′| � k.

We study the hardness of the cascading failure min-
imization problem and prove the first inapproximability
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result by a polynomial time reduction from the vertex
cover problem.

Theorem 1. It is NP-hard to approximate the cascading fail-
ure minimization problem within a factor of n1−ε , for any
0 < ε � 1.

The maximum threshold is equal to 2 in the above re-
duction, which motivates us to study the special case with
the maximum threshold of 1. We prove the second in-
approximability result by an approximation-preserving re-
duction from the minimum coverage problem [4].

Theorem 2. Unless there exists a probabilistic algorithm for
SAT that runs in time 2nδ

on an instance of size n, there
is no 1

2 nε -approximation algorithm for the cascading fail-
ure minimization problem even if the maximum threshold
equals 1, where δ > 0 is an arbitrarily small constant and
ε = 1/2O (1/δ log(1/δ)) .

The cascading failure minimization problem with the
maximum threshold of 1 is a special case of the quaran-
tining problem [5] and the minimum-size bounded-capacity
cut problem [6]. We can get a 1

2 nε inapproximability result
of the above two problems as a corollary of Theorem 2.
In addition, there are several related problems in which
the initial failed nodes are not known in advance [7,8].
In contrast to minimize the spread of cascades, the influ-
ence maximization problem, motivated by viral marketing,
aims to choose a set of k individuals to adopt a new prod-
uct, such that the number of further adoptions through the
cascade in social networks is maximized [9]. Several hard-
ness results and approximation algorithms for this problem
were reviewed by Kempe [10].

2. Proof of Theorem 1

We prove Theorem 1 by a polynomial time reduction
from the NP-complete vertex cover problem. Given a ver-
tex cover instance with a vertices, b edges and a non-
negative integer k, we can construct a CFM instance as
follows. For each edge in the vertex cover instance, we add
a node with a threshold of 2 in the CFM instance. We call
them edge-nodes. For each vertex in the vertex cover in-
stance, we add a node with a threshold of 1 in the CFM
instance. We call them vertex-nodes. If a vertex and an
edge are adjacent in the vertex cover instance, we pro-
duce a directed edge from the corresponding vertex-node
to the corresponding edge-node in the CFM instance. Next,
we add a node with a threshold of 0 in the CFM instance,
which is called zero-node. We produce directed edges from
the zero-node to each vertex-node. We add M nodes with
thresholds of 1 in the CFM instance, which are called slave-
nodes, where

M = (
2(a + 1)(1 + 2a + 3b)

) 1
ε . (1)

We produce directed edges from each edge-node to each
slave-node. Finally, let the budget of the CFM instance be
k given in the vertex cover instance. It is clear that this
reduction can be completed in polynomial time. The length

Fig. 1. An example of the reduction from a vertex cover instance (left) to
a CFM instance (right).

of the reduced CFM instance is 1 + 2a + 3b + (b + 1)M ,
which is the total number of the nodes and edges. Fig. 1
shows an example of this reduction.

Lemma 1. Given a CFM instance reduced from a vertex cover
instance, any optimal set of edges to delete only contains the
edges from the zero-node to vertex-nodes.

Proof. Because k is less than or equal to the number
of vertices, the budget in the CFM instance is less than
or equal to the number of edges from the zero-node to
vertex-nodes. If there is an optimal set containing an edge
from a vertex-node to an edge-node or an edge from an
edge-node to a slave-node, we can replace it with an edge
from the zero-node to a vertex-node, which will prevent at
least one more node from failing. �
Lemma 2. If the answer of a vertex cover instance is YES, then
the OPT (optimal value) of the reduced CFM instance is a−k+1.

Proof. Suppose that there is a k vertex cover. We delete
the k edges from the zero-node to the vertex-nodes, cor-
responding vertices of which are in the vertex cover. Be-
cause every edge in the vertex cover instance has one or
two endpoints in the vertex cover, all of the edge-nodes
and the slave-nodes are alive. The number of failed nodes
is a − k + 1. According to Lemma 1, any optimal set of
edges to delete only contains the edges from the zero-
node to vertex-nodes. It can save k vertex-nodes at most
by deleting k edges from the zero-node to vertex-nodes.
Thus, a − k + 1 is the OPT. �
Lemma 3. If the answer of a vertex cover instance is NO, then
the OPT of the reduced CFM instance is greater than M.

Proof. According to Lemma 1, any optimal set of edges
to delete only contains the edges from the zero-node to
vertex-nodes. Moreover, we cannot find a set of k edges
from the zero-node to vertex-nodes in the reduced CFM
instance to delete to make sure all edge-nodes are alive,
because there is not any k vertex cover. The OPT is there-
fore greater than M , since all of the M slave-nodes will
fail. �
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