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The fitness-level method, also called the method of f -based partitions, is an intuitive and
widely used technique for the running time analysis of randomized search heuristics. It
was originally defined to prove upper and lower bounds on the expected running time.
Recently, upper tail bounds were added to the technique; however, these tail bounds only
apply to running times that are at least twice as large as the expectation.
We remove this restriction and supplement the fitness-level method with sharp tail
bounds, including lower tails. As an exemplary application, we prove that the running time
of randomized local search on OneMax is sharply concentrated around n lnn − 0.1159...n.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The running time analysis of randomized search heuris-
tics, including evolutionary algorithms, ant colony opti-
mization and particle swarm optimization, is a vivid re-
search area where many results have been obtained in the
last 15 years. Different methods for the analysis were de-
veloped as the research area grew. For an overview of the
state of the art in the area see the books by Auger and
Doerr [1], Neumann and Witt [8] and Jansen [4].

The fitness-level method, also called the method of
f -based partitions, is a classical and intuitive method for
running time analysis, first formalized by Wegener [11]. It
applies to the case that the total running time of a search
heuristic can be represented as (or bounded by) a sum of
geometrically distributed waiting times, where the waiting
times account for the number of steps spent on certain
levels of the search space. Wegener [11] presented both
upper and lower bounds on the running time of random-
ized search heuristics using the fitness-level method. The
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lower bounds relied on the assumption that no level was
allowed to be skipped. Sudholt [10] significantly relaxed
this assumption and presented a very general lower-bound
version of the fitness-level method that allows levels to be
skipped with some probability.

Only recently, the focus in running time analysis turned
to tail bounds, also called concentration inequalities. Zhou,
Luo, Lu, Han [12] were the first to add tail bounds to the
fitness-level method. Roughly speaking, they prove w.r.t.
the running time T that Pr(T > 2E(T ) + 2δh) = e−δ holds,
where h is the worst-case expected waiting time over all
fitness levels and δ > 0 is arbitrary. An obvious open ques-
tion was whether the factor 2 in front of the expected
value could be “removed” from the tail bound, i.e., replaced
with 1; Zhou et al. [12] only remark that the factor 2 can
be replaced with 1.883.

In this article, we give a positive answer to this ques-
tion and supplement the fitness-level method also with
lower tail bounds. Roughly speaking, we prove in Section 2
that Pr(T � E(T ) − δ) � e−δ2/(2s) and Pr(T � E(T ) + δ) �
e− δ

4 ·min{ δ
s ,h} , where s is the sum of the squares of the wait-

ing times over all fitness levels. We apply the technique
to a classical benchmark problem, more precisely to the
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running time analysis of randomized local search (RLS) on
OneMax in Section 3, and prove a very sharp concentration
of the running time around n ln n − 0.1159...n. We finish
with some conclusions and a pointer to related work.

2. New tail bounds for fitness levels

Miscellaneous authors [6] on the Internet discussed
tail bounds for a special case of our problem, namely
the coupon collector problem (Motwani and Raghavan [7,
Chapter 3.6]). Inspired by this discussion, we present our
main result in Theorem 1 below. It applies to the sce-
nario that a random variable (e.g., a running time) is given
as a sum of geometrically distributed independent random
variables (e.g., waiting times on fitness levels). A concrete
application will be presented in Section 3.

Theorem 1. Let Xi , 1 � i � n, be independent random variables
following the geometric distribution with success probability pi ,
and let X := ∑n

i=1 Xi . If
∑n

i=1(1/p2
i ) � s < ∞ then for any

δ > 0

Pr
(

X � E(X) − δ
)
� e− δ2

2s .

For h := min{pi | i = 1, . . . ,n},

Pr
(

X � E(X) + δ
)
� e− δ

4 ·min{ δ
s ,h}.

For the proof, the following two simple inequalities will
be used.

Lemma 1.

1. For x � 0 it holds ex

1+x � ex2/2 .

2. For 0 � x � 1 it holds e−x

1−x � ex2/(2−2x) .

Proof. We start with the first inequality. The series repre-
sentation of the exponential function yields

ex =
∞∑

i=0

xi

i! �
∞∑

i=0

(1 + x)
x2i

(2i)!
since x � 0. Hence,

ex

1 + x
�

∞∑
i=0

x2i

(2i)! .

Since (2i)! � 2i i!, we get

ex

1 + x
�

∞∑
i=0

x2i

2i i! = ex2/2.

To prove the second inequality, we omit all negative
terms except for −x from the series representation of e−x

to get

e−x

1 − x
�

1 − x + ∑∞
i=1

x2i

(2i)!
1 − x

= 1 +
∞∑

i=1

x2i

(1 − x) · (2i)! .

For comparison,

ex2/(2−2x) = 1 +
∞∑

i=1

x2i

2i(1 − x)i i! ,

which, as x � 1, is clearly not less than our estimate for
e−x/(1 − x). �
Proof of Theorem 1. Both the lower and upper tail are an-
alyzed similarly, using the exponential method (see, e.g.,
the proof of the Chernoff bound in Motwani and Ragha-
van [7, Chapter 3.6]). We start with the lower tail. Let
d := E(X) − δ = ∑n

i=1(1/pi) − δ. Since for any t � 0

X � d ⇐⇒ −X � −d ⇐⇒ e−t X � e−td,

Markov’s inequality and the independence of the Xi yield
that

Pr(X � d) � E(e−t X )

e−td
= etd ·

n∏
i=1

E
(
e−t Xi

)
.

Note that the last product involves the moment-generating
functions (mgf ’s) of the Xi . Given a geometrically dis-
tributed random variable Y with parameter p, its moment-
generating function at r ∈ R equals E(erY ) = per

1−er(1−p)
=

1
1−(1−e−r)/p for r < − ln(1 − p). We will only use negative
values for r, which guarantees existence of the mgf ’s used
in the following. Hence,

Pr(X � d) � etd ·
n∏

i=1

1

1 − (1 − et)/pi
� etd ·

n∏
i=1

1

1 + t/pi
,

where we have used ex � 1 + x for x ∈ R. Now, by writing
the numerators as et/pi · e−t/pi , using ex

1+x � ex2/2 for x � 0
(Lemma 1) and finally plugging in d, we get

Pr(X � d) � etd ·
(

n∏
i=1

et2/(2p2
i )e−t/pi

)

= etde(t2/2)
∑n

i=1(1/pi)
2
e−t E(X) � e−tδ+(t2/2)s.

The last exponent is minimized for t = δ/s, which yields

Pr(X � d) � e− δ2
2s

and proves the lower tail inequality.
For the upper tail, we redefine d := E(X)+ δ and obtain

Pr(X � d) � E(et X )

etd
= e−td ·

n∏
i=1

E
(
et Xi

)
.

Since now positive arguments will be used for the
moment-generating functions of the Xi , their existence is
not trivial. In the following, we assume t � min{pi | i =
1, . . . ,n}/2 = h/2. Since pi � − ln(1 − pi), our assumption
implies t � − ln(1 − pi) for any i. The factor 1/2 will be
crucial later.

Estimating the moment-generating functions similarly
as above, we get

Pr(X � d) � e−td ·
(

n∏
i=1

e−t/pi

1 − t/pi
· et/pi

)
.
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