
Information Processing Letters 114 (2014) 50–55

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A simple 3-edge connected component algorithm revisited

Nima Norouzi a, Yung H. Tsin b,∗,1

a Computer Sciences Corporation, 32605 West 12 Mile Road, Farmington Hills, MI, USA
b School of Computer Science, University of Windsor, Windsor, Ontario, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 November 2012
Received in revised form 31 May 2013
Accepted 18 September 2013
Available online 25 September 2013
Communicated by Tsan-sheng Hsu

Keywords:
3-edge-connectivity
3-edge-connected components
Graph algorithms

Graph connectivity is a graph-theoretic concept that is fundamental to the studies of
many applications such as network reliability and network decomposition. For the 3-edge-
connectivity problem, recently, it has been shown to be useful in a variety of apparently
unrelated areas such as solving the G-irreducibility of Feynman diagram in physics
and quantum chemistry, editing cluster and aligning genome in bioinformatics, placing
monitors on the edges of a network in flow networks, spare capacity allocation and
decomposing a social network to study its community structure. A number of linear-time
algorithms for 3-edge-connectivity have thus been proposed. Of all these algorithms, the
algorithm of Tsin is conceptually the simplest and also runs efficiently in a recent study.
In this article, we shall show how to simplify the implementation of a key step in the
algorithm making the algorithm much more easier to implement and run more efficiently.
The simplification eliminates a rather complicated linked-lists structure and reduces the
space requirement of that step from O (|E|) to O (|V |), where V and E are the vertex set
and the edge set of the input graph, respectively.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Graph connectivity is a graph-theoretic concept that is
fundamental to the studies of many applications such as
network reliability and network decomposition. For the
3-edge-connectivity problem, recently, it has been shown
to be useful in a variety of apparently unrelated areas
such as solving the G-irreducibility of Feynman diagram in
physics and quantum chemistry [3,4], editing cluster and
aligning genome in bioinformatics [5,12–14], placing mon-
itors on the edges of a network in flow networks [1], spare
capacity allocation [8] and decomposing a social network
to study its community structure [2]. Owing to this reason,
a number of linear-time algorithms for 3-edge-connectivity
have been proposed [7,10,15,17,18]. It is of practical inter-
est to investigate which of these algorithms should be used

* Corresponding author.
E-mail addresses: nima@norouzi.net (N. Norouzi), peter@uwindsor.ca

(Y.H. Tsin).
1 Research partially supported by NSERC under grant NSERC-781103.

in real-life applications. A study reported in [18] shows
that [17] is a strong candidate. Since ease of implemen-
tation is a factor taken seriously by application program-
mers, in this article, we shall address an implementation
issue of the algorithm by showing how to improve the im-
plementation of one of its key steps originally described
in [17]. The improvement results in eliminating the usage
of a linked list whereby reducing the space requirement
of that step from O (|E|) to O (|V |) (V and E are the ver-
tex set and edge set of the input graph, respectively) and
making the coding of the algorithm considerably easier.
We have actually implemented the algorithm; the code
is available at [11]. Recently, Mehlhorn, Neumann and
Schmidt [9] presented a linear-time certifying algorithm
for testing 3-edge-connectivity. Their algorithm returns a
short certificate as a proof if the input graph is 3-edge-
connected. If the input graph is not 3-edge-connected, the
algorithm returns one cut-pair as a proof; it does not gen-
erate the 3-edge-connected components or a correspond-
ing set of cut-pairs. By contrast, the existing algorithms [7,
10,15,17,18] are non-certifying but generate all the 3-edge-
connected components.

0020-0190/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.09.010

http://dx.doi.org/10.1016/j.ipl.2013.09.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:nima@norouzi.net
mailto:peter@uwindsor.ca
http://dx.doi.org/10.1016/j.ipl.2013.09.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2013.09.010&domain=pdf

N. Norouzi, Y.H. Tsin / Information Processing Letters 114 (2014) 50–55 51

Fig. 1. Absorb–eject operation.

2. Some basic definitions

The graph-theoretic concepts used in this paper can be
found in standard textbooks such as [6]. The definitions
given in this section are some of the more basic and im-
portant ones.

The input graph is denoted by G = (V , E), where V is
the vertex set and E is the edge set. An edge e in E is rep-
resented by e = (x, y), where x and y are the end-vertices.
The graph G may contain parallel edges but no self-loops
as self-loop has no impact on the connectivity of a graph.
If E = ∅, the graph is a null graph. The degree of a vertex u
in G , denoted by degG(u), is the number of edges incident
on u in G .

A u − v path is a path connecting the vertices u and v
in G . A graph G = (V , E) is connected if ∀u, v ∈ V , there
is a u − v path in it. It is disconnected otherwise. Let G be
a connected graph. An edge is a bridge in G if removing
it from G results in a disconnected graph. The graph G
is 2-edge-connected if it has no bridge. A cut-pair of G is
a pair of edges whose removal results in a disconnected
graph and neither is a bridge. A cut-edge is an edge in a
cut-pair. The graph G is 3-edge-connected if it has neither
a bridge nor a cut-pair. A 3-edge-connected component of G
is a maximal 3-edge-connected subgraph of G .

Depth-first search (henceforth, abbreviated as DFS) aug-
mented with vertex labeling is a graph traversal technique
first introduced by Tarjan [16]. When a DFS is performed
over a graph, each vertex w is assigned a depth-first num-
ber, dfs(w), such that dfs(w) = k if vertex w is the kth
vertex visited by the search for the first time. The search
also partitions the edge set into two types of edges, tree-
edge and back-edge. An edge e = (u, v) is a tree-edge, de-
noted by u → v , if dfs(u) < dfs(v) and back-edge, denoted
by u ↪→ v , if dfs(v) < dfs(u). In the former case, u is the
parent of v while v is a child of u. In the latter case, u is
the tail while v is the head and the back-edge is an incom-
ing back-edge of v and an outgoing back-edge of u.

The tree-edges form a spanning tree of G , denoted
by T , rooted at the vertex r from which the search be-
gins. A vertex u is an ancestor of vertex v (vertex v is a
descendant of vertex u) if u is a vertex on the r − v path
in T . A u − v path in T is a tree-path if u is an ancestor
of v . The subtree of T rooted at vertex w , denoted by T w , is
the subtree of T containing all the descendants of w .

∀w ∈ V , lowpt(w) = dfs(z), where dfs(z) is the small-
est among the dfs numbers of all the vertices that can be
reached from w via a (possibly null) w − v tree-path fol-
lowing by a back-edge v ↪→ z.

3. The simplified implementation

First, we shall briefly explain the key idea underlying
the algorithm in [17].

Beginning with the input graph G = (V , E), the graph is
gradually transformed so that vertices that are confirmed
to be belonging to the same 3-edge-connected component
are merged into one vertex, called a supervertex. Each su-
pervertex is represented by a vertex v ∈ V and a set σ(v)

consisting of a subset of vertices that have been confirmed
to be belonging to the same 3-edge-connected component
as v . Initially, each vertex v is regarded as a supervertex
with σ(v) = {v}. When two supervertices w and u are
merged, one of them, say w , absorbs the other resulting in
σ(w) = σ(w) ∪ σ(u). When a supervertex containing all
the vertices of a 3-edge-connected component is formed,
it is separated from the graph becoming an isolated ver-
tex. At the end, the graph is transformed into a collection
of isolated supervertices each of which contains the ver-
tices of a distinct 3-edge-connected component of G .

The graph is transformed by the absorb–eject operation.
Let G be transformed to Ĝ when the operation is applied
to an edge e = (w, u),

(i) If degĜ(u) = 2, let e′ = (u, u1) be the other edge in-
cident on u. Then {e, e′} is a cut-pair. So, e and e′ are
replaced by a new edge (w, u1) and u becomes an iso-
lated supervertex (Fig. 1(i)).

(ii) If degĜ(u) 	= 2 and it is confirmed that e cannot be a
cut-edge, then vertex w adsorbs vertex u as they must
belong to the same 3-edge-connected component. As
a consequence, the edges incident on u become edges
incident on w (Fig. 1(ii)) and σ(w) = σ(w) ∪ σ(u).

To carry out the transformation, the algorithm performs
a depth-first search over G starting from an arbitrary ver-
tex r. During the depth-first search, whenever the search
backtracks from a vertex u to a vertex w , the subgraph of
G induced by the vertex set of Tu has been transformed
into a set of isolated supervertices and a u − uk tree-path,
u − u1 − u2 − · · · − uk (Fig. 2). Each isolated supervertex v

Download English Version:

https://daneshyari.com/en/article/6874283

Download Persian Version:

https://daneshyari.com/article/6874283

Daneshyari.com

https://daneshyari.com/en/article/6874283
https://daneshyari.com/article/6874283
https://daneshyari.com

