Information Processing Letters 114 (2014) 50-55

Contents lists available at ScienceDirect ' information

Information Processing Letters

www.elsevier.com/locate/ipl

A simple 3-edge connected component algorithm revisited @CmssMark

Nima Norouzi?, Yung H. Tsin >*

@ Computer Sciences Corporation, 32605 West 12 Mile Road, Farmington Hills, MI, USA
b School of Computer Science, University of Windsor, Windsor, Ontario, Canada

ARTICLE INFO ABSTRACT
ATfiC{E history: Graph connectivity is a graph-theoretic concept that is fundamental to the studies of
Received 24 November 2012 many applications such as network reliability and network decomposition. For the 3-edge-

Received in revised form 31 May 2013
Accepted 18 September 2013
Available online 25 September 2013
Communicated by Tsan-sheng Hsu

connectivity problem, recently, it has been shown to be useful in a variety of apparently
unrelated areas such as solving the G-irreducibility of Feynman diagram in physics
and quantum chemistry, editing cluster and aligning genome in bioinformatics, placing
monitors on the edges of a network in flow networks, spare capacity allocation and

Keywords: decomposing a social network to study its community structure. A number of linear-time
3-edge-connectivity algorithms for 3-edge-connectivity have thus been proposed. Of all these algorithms, the
3-edge-connected components algorithm of Tsin is conceptually the simplest and also runs efficiently in a recent study.
Graph algorithms In this article, we shall show how to simplify the implementation of a key step in the

algorithm making the algorithm much more easier to implement and run more efficiently.
The simplification eliminates a rather complicated linked-lists structure and reduces the
space requirement of that step from O(|E|) to O(|V]), where V and E are the vertex set
and the edge set of the input graph, respectively.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction in real-life applications. A study reported in [18] shows
that [17] is a strong candidate. Since ease of implemen-

Graph connectivity is a graph-theoretic concept that is tation is a factor taken seriously by application program-
fundamental to the studies of many applications such as mers, in this article, we shall address an implementation
network reliability and network decomposition. For the issue of the algorithm by showing how to improve the im-

plementation of one of its key steps originally described
in [17]. The improvement results in eliminating the usage
of a linked list whereby reducing the space requirement
of that step from O(|E|) to O(]V]|) (V and E are the ver-
tex set and edge set of the input graph, respectively) and
making the coding of the algorithm considerably easier.
We have actually implemented the algorithm; the code
is available at [11]. Recently, Mehlhorn, Neumann and
Schmidt [9] presented a linear-time certifying algorithm
for testing 3-edge-connectivity. Their algorithm returns a
short certificate as a proof if the input graph is 3-edge-
connected. If the input graph is not 3-edge-connected, the
algorithm returns one cut-pair as a proof; it does not gen-
¥ erate the 3-edge-connected components or a correspond-

Corresponding author. . . s .

E-mail addresses: nima@norouzi.net (N. Norouzi), peter@uwindsor.ca Ing set of cut-pairs. By contrast, the existing algorlthms [7’
(Y.H. Tsin). 10,15,17,18] are non-certifying but generate all the 3-edge-

1 Research partially supported by NSERC under grant NSERC-781103. connected components.

3-edge-connectivity problem, recently, it has been shown
to be useful in a variety of apparently unrelated areas
such as solving the G-irreducibility of Feynman diagram in
physics and quantum chemistry [3,4], editing cluster and
aligning genome in bioinformatics [5,12-14], placing mon-
itors on the edges of a network in flow networks [1], spare
capacity allocation [8] and decomposing a social network
to study its community structure [2]. Owing to this reason,
a number of linear-time algorithms for 3-edge-connectivity
have been proposed [7,10,15,17,18]. It is of practical inter-
est to investigate which of these algorithms should be used

0020-0190/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.09.010

http://dx.doi.org/10.1016/j.ipl.2013.09.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:nima@norouzi.net
mailto:peter@uwindsor.ca
http://dx.doi.org/10.1016/j.ipl.2013.09.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2013.09.010&domain=pdf

N. Norouzi, Y.H. Tsin / Information Processing Letters 114 (2014) 50-55 51

Q>

~@

Q

O’ Case (i)

A
G

! Case (ii)

Fig. 1. Absorb-eject operation.

2. Some basic definitions

The graph-theoretic concepts used in this paper can be
found in standard textbooks such as [6]. The definitions
given in this section are some of the more basic and im-
portant ones.

The input graph is denoted by G = (V, E), where V is
the vertex set and E is the edge set. An edge e in E is rep-
resented by e = (x, y), where x and y are the end-vertices.
The graph G may contain parallel edges but no self-loops
as self-loop has no impact on the connectivity of a graph.
If E =, the graph is a null graph. The degree of a vertex u
in G, denoted by deg;(u), is the number of edges incident
onu in G.

A u — v path is a path connecting the vertices u and v
in G. A graph G = (V,E) is connected if Yu,v € V, there
is a u — v path in it. It is disconnected otherwise. Let G be
a connected graph. An edge is a bridge in G if removing
it from G results in a disconnected graph. The graph G
is 2-edge-connected if it has no bridge. A cut-pair of G is
a pair of edges whose removal results in a disconnected
graph and neither is a bridge. A cut-edge is an edge in a
cut-pair. The graph G is 3-edge-connected if it has neither
a bridge nor a cut-pair. A 3-edge-connected component of G
is a maximal 3-edge-connected subgraph of G.

Depth-first search (henceforth, abbreviated as DFS) aug-
mented with vertex labeling is a graph traversal technique
first introduced by Tarjan [16]. When a DFS is performed
over a graph, each vertex w is assigned a depth-first num-
ber, dfs(w), such that dfs(w) =k if vertex w is the kth
vertex visited by the search for the first time. The search
also partitions the edge set into two types of edges, tree-
edge and back-edge. An edge e = (u, v) is a tree-edge, de-
noted by u — v, if dfs(u) < dfs(v) and back-edge, denoted
by u < v, if dfs(v) < dfs(u). In the former case, u is the
parent of v while v is a child of u. In the latter case, u is
the tail while v is the head and the back-edge is an incom-
ing back-edge of v and an outgoing back-edge of u.

The tree-edges form a spanning tree of G, denoted
by T, rooted at the vertex r from which the search be-
gins. A vertex u is an ancestor of vertex v (vertex v is a
descendant of vertex u) if u is a vertex on the r — v path
in T.Au—v path in T is a tree-path if u is an ancestor
of v. The subtree of T rooted at vertex w, denoted by T, is
the subtree of T containing all the descendants of w.

Yw € V, lowpt(w) = dfs(z), where dfs(z) is the small-
est among the dfs numbers of all the vertices that can be
reached from w via a (possibly null) w — v tree-path fol-
lowing by a back-edge v — z.

3. The simplified implementation

First, we shall briefly explain the key idea underlying
the algorithm in [17].

Beginning with the input graph G = (V, E), the graph is
gradually transformed so that vertices that are confirmed
to be belonging to the same 3-edge-connected component
are merged into one vertex, called a supervertex. Each su-
pervertex is represented by a vertex v € V and a set o (v)
consisting of a subset of vertices that have been confirmed
to be belonging to the same 3-edge-connected component
as v. Initially, each vertex v is regarded as a supervertex
with o(v) = {v}. When two supervertices w and u are
merged, one of them, say w, absorbs the other resulting in
o(w) =0 (w) U o (u). When a supervertex containing all
the vertices of a 3-edge-connected component is formed,
it is separated from the graph becoming an isolated ver-
tex. At the end, the graph is transformed into a collection
of isolated supervertices each of which contains the ver-
tices of a distinct 3-edge-connected component of G.

The graph is transformed by the absorb-eject operation.
Let G be transformed to G when the operation is applied
to an edge e = (w, u),

(i) If degg(u) =2, let e’ = (u,uy) be the other edge in-
cident on u. Then {e, e’} is a cut-pair. So, e and e’ are
replaced by a new edge (w, u1) and u becomes an iso-
lated supervertex (Fig. 1(i)).

(i) If degg(u) # 2 and it is confirmed that e cannot be a
cut-edge, then vertex w adsorbs vertex u as they must
belong to the same 3-edge-connected component. As
a consequence, the edges incident on u become edges
incident on w (Fig. 1(ii)) and o(w) = o (w) U o (u).

To carry out the transformation, the algorithm performs
a depth-first search over G starting from an arbitrary ver-
tex r. During the depth-first search, whenever the search
backtracks from a vertex u to a vertex w, the subgraph of
G induced by the vertex set of T, has been transformed
into a set of isolated supervertices and a u — uy, tree-path,
u—uq—up—---—uy (Fig. 2). Each isolated supervertex v

Download English Version:

https://daneshyari.com/en/article/6874283

Download Persian Version:

https://daneshyari.com/article/6874283

Daneshyari.com

https://daneshyari.com/en/article/6874283
https://daneshyari.com/article/6874283
https://daneshyari.com

