
Information Processing Letters 114 (2014) 56–59

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Approximation algorithms for the ring loading problem with
penalty cost

Weidong Li ∗, Jianping Li, Li Guan

Yunnan University, Kunming 650091, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 February 2012
Received in revised form 15 July 2013
Accepted 16 August 2013
Available online 26 August 2013
Communicated by F.Y.L. Chin

Keywords:
Approximation algorithms
Ring loading
Penalty cost

The ring loading problem and its variants have been extensively studied in the last fifteen
years, under the assumption that all requests have to be satisfied. However, in many
practical cases, one may wish to reject some requests, which results in a penalty cost.
We introduce the ring loading problem with penalty cost, which generalizes the well-known
ring loading problem (Schrijver et al., 1999 [14]). We prove that this problem is NP-
hard even if the demand can be split, and design a 1.58-approximation algorithm for the
integer demand splittable case and a (1.58 + ε)-approximation algorithm for the demand
unsplittable case, for any given number ε > 0.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Given a set of connection requests with demands in
SONET (Synchronous Optical NETwork) ring, each pair
must be routed in one of the two possible ways around
the ring. In order to compute the suitable capacity required
for a proposed SONET ring, the ring loading problem (RLP,
for short) is to minimize the maximum load on the ring,
where the load of an edge is the sum of the demands of
requests routed through that edge. RLP has been exten-
sively studied in the literature under the assumption that
all requests have to be satisfied [12–15].

Schrijver, Seymour and Winkler [14] developed an ele-
gant LP-rounding method which can obtain a feasible so-
lution with additive error at most 3/2 times the maximum
demand. Khanna [12] designed a polynomial-time approx-
imation scheme (PTAS) for RLP. Myung [13] presented an
efficient algorithm for RLP with integer demand splitting
where the request can be routed in two ways with the de-
mand of each request in each direction restricted to inte-
gers. This result is improved by Wang [15] who presented
a linear-time optimal algorithm. Wilfong and Winkler [16]
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designed an optimal algorithm for directed RLP with in-
teger demand splitting. Recently, the online version was
considered by Havill and Hutson [11]; they designed an
online algorithm which achieves the best competitive ra-
tio.

A closely related problem is the call admission control
problem in rings which is to compute a maximum cardi-
nality subset of the given paths in the ring such that no
edge capacity is violated [1]. As the call admission con-
trol problem is an important combinatorial optimization
problem encountered in the design and operation of com-
munication networks, Anand et al. [3] considered another
equivalent objective which is to minimize number of re-
jected requests for the call admission control problem in
a general network. Some online related problems with the
objective of minimizing the number of rejected requests
can be found in [2,4,7].

In this paper, we consider a problem with a more in-
tegrated objective function, called the ring loading problem
with penalty cost (RLPPC, for short), which is defined as
follows. An n-node ring C is an undirected graph C =
(V , E), where V = {1,2, . . . ,n} is a set of nodes and
E = {ei = (i, i + 1) | 1 � i � n − 1} ∪ {en = (n,1)} is a set
of physical links. For each j = 1,2, . . . ,m, we are given
a connection request r j = (s j, t j), where s j, t j ∈ V and
s j < t j . We say that a request is routed in the clockwise
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(counterclockwise) direction if a request passes through
the node sequence {s j, s j + 1, . . . , t j − 1, t j} ({s j, s j − 1,

. . . ,1,n, . . . , t j + 1, t j}). Each request r j has a demand d j
and a penalty p j , and it must be routed in one of the
two possible ways around the ring or be rejected with
penalty p j . The objective is to minimize the sum of the
maximum load of the edges on the ring C and the total
penalty cost, where the load of an edge is the sum of the
demands of requests routed through that edge. RLPPC is
closely related to the unsplittable flow problem on the ring
[6], in which the requests are pre-routed, and the objective
is to maximum the total profits of the accepted requests
within the capacity limitations. Bansal et al. [6] designed
an O (log n)-approximation algorithm for it. A special case
of the unsplittable flow problem on the ring is considered
in [5,8,9].

If p j = ∑m
j=1 d j + 1 for each request r j , which implies

that no requests will be rejected, RLPPC is exactly the RLP
problem in [14]. Thus, since RLP is NP-hard, RLPPC is also
NP-hard. We also consider the RLPPC problem with inte-
ger demand splitting. This problem generalizes RLP with
integer demand splitting [13,15], which possesses an opti-
mal polynomial-time algorithm. We show that the RLPPC
problem with integer demand splitting is NP-hard and
present a 1.58-approximation algorithm for it by using a
randomized rounding technique. Moreover, combining this
method and the techniques in [12,14,16], we design a
(1.58 + ε)-approximation algorithm for the RLPPC problem
with demand unsplittable, where ε > 0 is a fixed constant.

2. The RLPPC problem with integer demand splitting

In this section, we consider the RLPPC problem with
integer demand splitting, where the demand of each
accepted request r j can be split into two integer de-
mands and routed in two ways satisfying total demand d j .
We prove that this problem is NP-hard, and present a
1.58-approximation algorithm for the RLPPC problem with
fractional demand splitting. Then, using the LP-rounding
method in [14,16], it is easy to obtain a 1.58-approximation
algorithm for the RLPPC problem with integer demand
splitting.

Theorem 1. When the demand is integer splittable, RLPPC is NP-
hard.

Proof. We will construct a polynomial-time reduction
from the partition problem [10]. Given a set I = {a1,a2,

. . . ,an} of positive integers and a positive integer T =∑n
j=1 a j/2, the partition problem is to decide whether

there is a subset I ′ ⊆ I satisfying
∑

a j∈I ′ a j = T . We con-
struct an instance τ (I) for RLPPC as follows. Define a ring
C = (V , E) with V = {1,2,3} and E = {(1,2), (2,3), (3,1)}.
There are n + 2 requests. For j = 1,2, . . . ,n, the request
r j = (1,2) has a demand d j = 4a j and a penalty cost
p j = a j . The requests rn+1 = (2,3) and rn+2 = (1,3) each
has a demand 4T and a penalty cost 5T + 1.

We claim that instance I has a feasible solution if and
only if there is a feasible solution for instance τ (I) with
objective value no more than 5T .

If instance I has a feasible solution I ′ ⊆ I satisfying∑
a j∈I ′ a j = T , each request r j corresponding to a j ∈ I ′ is

rejected and each request r j corresponding to a j ∈ I \ I ′
is routed in the clockwise direction, for j = 1,2, . . . ,n.
The total penalty cost of the rejected requests is T . The
requests rn+1 and rn+2 are routed in clockwise and coun-
terclockwise direction, respectively. The maximum load of
the edges is 4T . Thus, we obtain a feasible solution with
objective value 5T .

If there is a feasible solution F for instance τ (I) with
objective value at most 5T , the requests rn+1 and rn+2 can-
not be rejected. Clearly, the maximum load of the edges
assigned to requests rn+1 and rn+2 in any feasible rout-
ing is at least 4T . Without loss of generality, assume that,
in the feasible solution F , the requests rn+1 and rn+2
are routed in clockwise and counterclockwise direction, re-
spectively. If not, it is easy to change the routing ways of
rn+1 and rn+2 to satisfy the assumption without increasing
the maximum load of the edges. The total penalty cost of
the rejected requests denoted by P satisfies

P � 5T − 4T = T . (1)

Hence, the sum of demands of the accepted requests r j
( j � n) is 4(2T − P ) � 4T . Combining with the fact that
the loads of the edges (2,3) and (3,1) are 4T after as-
signing the requests rn+1 and rn+2, the maximum load of
the edges is at least 4T + 4(2T −P )−4T

2 = 6T −2P , which im-
plies that the objective value of F is at least P +6T −2P =
6T − P . From the assumption that the objective value of F
is at most 5T , we have 6T − P � 5T , implying that P � T .
Combining with (1), we have P = T , which implies that
the instance I has a feasible solution I ′ , where I ′ contains
all the elements a j corresponding to requests r j that are
rejected. Since the partition problem is NP-hard [10], so is
RLPPC. �

For the demand integer-splittable case, if the request
r j is accepted, it can be routed in the clockwise direction
with integer demand dclockwise

j , and in the counterclock-

wise direction with integer demand dcounterclockwise
j , where

dclockwise
j + dcounterclockwise

j = d j . To design an approxima-
tion algorithm for the RLPPC problem with integer de-
mand splitting, we first construct a mixed integer program
(MIP) for the RLPPC problem with fractional demand split-
ting, where dclockwise

j and dcounterclockwise
j can be fractional

numbers.
For each request r j , let P j

1 = {ei | s j � i � t j − 1} be
the set of edges on the path from s j to t j in the clock-

wise direction, and P j
0 = E \ P j

1 the set of edges on the
path from s j to t j in the counterclockwise direction. For
every edge ei ∈ E , let Ci be the set of the aforemen-
tioned paths containing ei , i.e., Ci = {P j

k | ei ∈ P j
k, for j =

1,2, . . . ,m and k = 0,1}.
For each request r j , we introduce a 0–1 variable z j and

two variables x j
1, x j

0 ∈ [0,1], where z j = 1 (z j = 0) indi-
cates that the request r j is accepted (rejected). If z j = 1,

x j
1 = dclockwise

j /d j (x j
0 = dcounterclockwise

j /d j ) implies that the
request r j is routed in the clockwise (counterclockwise)
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