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a  b  s  t  r  a  c  t

Multiscale  modeling  is  a systematic  approach  for  the  development  of  high-fidelity  models  of  complex
systems.  However,  multiscale  models  are  often  extremely  computationally  demanding,  which  precludes
their use  for  practical  applications.  In this  article,  we  introduce  a computational  framework  for  scale-
bridging  combined  with  an algorithm  to automatically  and  adaptively  replace  at-scale  models  within  a
multiscale  model  hierarchy  with  surrogate  models  in order  to reduce  the computational  cost  of  multi-
scale  simulations.  A standalone  module  is  introduced  and  it is responsible  for  the  on-the-fly  construction
and  evaluation  of  surrogate  models  within  the  framework.  Such  an  approach  allows  multiscale  models
to  easily  incorporate  surrogate  models  with  minimal  code  modifications.  We  employ  the framework
to  construct  a multiscale  model  of  1,3,5-trinitrohexahydro-s-triazine,  in  which  a  continuum  finite  ele-
ment  macroscale  solver  acquires  equation  of  state  through  evaluation  of  a microscale  dissipative  particle
dynamics  model.  We  utilize  the  model  for the simulation  of a Taylor  impact  experiment  and  demon-
strate  that the error in the  solution  incurred  by the  dynamic  use  of  surrogate  models  is controllable.
Furthermore,  we  show  that  the  use  of  surrogate  models  leads  to a  reduction  in computational  cost  of
between  1/20  and  1/5000  compared  to a simulation  evaluated  without  the  surrogate  modeling  approach.
In addition,  we  present  a  high-resolution  simulation  of a  Taylor  impact  experiment,  which  is intractable
without  surrogate  models.  We  illustrate  how  the  dynamic  nature  of surrogate  model  evaluation  in  these
simulations,  while  reducing  computational  cost, also  increases  load  imbalance.  Finally,  we  end  with  a dis-
cussion  on  how  the  inherent  variability  in  these  simulations  may  constitute  a challenge  for  the current
high  performance  computer  systems  given  their  static  nature.

Published  by Elsevier  B.V.

1. Introduction

In the last two decades, multiscale modeling has become a
dominant paradigm for building high-fidelity models of complex
systems. Multiscale modeling is a divide-and-conquer approach:
it strives to systematically identify relevant phenomena occurring
at individual scales, both spatial and temporal, and link appro-
priate at-scale models into a single model hierarchy. The ability
of multiscale modeling to yield high-fidelity models has been
demonstrated in applications as diverse as materials modeling [1],
biophysics [2–4], astrophysics [5] and weather modeling [6].

Multiscale modeling is by and large a computational endeavor.
However, only lately, have computational aspects of multiscale
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modeling become a focus of vibrant research efforts (c.f. [7] for
a review of recent developments). These efforts have been now
primarily directed towards the advancement of organizing frame-
works for systematic construction of multiscale models. Examples
include the multiscale universal interface for partitioned-domain
methods [8] and work by Borgdorff and colleagues on distributed
multiscale computing for hierarchical multiscale modeling [9–11].
Recently, we  have formulated a computational methodology for
scale-bridging in hierarchical multiscale modeling allowing for
seamless assembly of multiscale models [12,13] and employed it
to build a two-scale model of the mechanical response of energetic
materials [14]. Yet, even with such a relatively simple multiscale
model, its computational cost has turned out to be staggering.
Moreover, since multiscale models routinely encountered in prac-
tice incorporate many computationally expensive at-scale models,
the computational cost of such models is bound to become even
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higher, possibly casting doubt on the feasibility of using multiscale
modeling in practical applications.

In order to significantly reduce the computational cost of com-
plex models, surrogate models, sometimes also referred to as
metamodels, have been widely employed for design optimization
[15–17]. A surrogate model is a cheaper-to-evaluate approximation
of a model, constructed from direct observations of the model. In
design optimization, where a model is evaluated repeatedly during
the optimization process, replacement of an expensive model with
a surrogate model can dramatically reduce the computational cost.
Many surrogate modeling methods have been introduced over the
years. A comprehensive survey of surrogate modeling techniques
in design optimization, including polynomial regression, kriging,
multivariate adaptive regression splines, polynomial stochastic col-
location, adaptive stochastic collocation, and radial basis functions
can be found in [18,19].

Surrogate models are also an attractive approach to substan-
tially lower the computational cost of multiscale models since
many multiscale models rely on repeated evaluation of individual
at-scale models within a multiscale model hierarchy. The pio-
neering work on the use of surrogate models for physics-based
modeling is due to Pope [20], who employed in situ adaptive tab-
ulation to expedite simulations involving combustion chemistry.
The use of surrogate models in multiscale modeling of materials has
been explored by Knap et al. [21] and Barton et al. [22] who  replaced
the evaluation of a crystal plasticity based constitutive law with
dynamically constructed kriging-based surrogate models. Recently,
Roehm et al. [23] utilized a similar approach in an elastodynamics
model. In atomistic models, Li et al. [24] developed an approach to
adaptively replace the computation of atomic forces from quantum
mechanical models with forces obtained via interpolation of pre-
viously stored calculations. For a multiscale biomechanics model,
Wirtz et al. [25] investigated the use of kernel surrogate models to
learn the interface between macroscale and microscale models.

In this article, we describe a computational methodology for the
dynamic construction and evaluation of surrogate models to reduce
the computational cost of hierarchical multiscale simulations. The
methodology allows for incorporation of surrogate models into
any multiscale model with minimal changes. We  formulate our
methodology in Section 2 and detail its application to construct
a two-scale model of an energetic material in Section 3.

2. Multiscale computational framework

2.1. A modular computational framework for scale-bridging

The point of departure for our work is the computational frame-
work for scale-bridging in multiscale simulations of Knap et al. [12],
which allows to combine individual at-scale model components
together to form a multiscale model. The simplest multiscale model
that can be assembled in the framework consists of two  at-scale
models, the macroscale model F and the microscale model f (c.f.
Fig. 1). The macroscale model is a mapping F : I × D �→ R, where I is a
collection of microscale models, domain D ⊂ R

N , and range R ⊂ R
M .

Similarly, the microscale model is a mapping f : D̂ �→ R̂ where D̂ ⊂
R
n and R̂ ⊂ R

m denote the domain and range of f, respectively. In
addition, the framework includes two mappings to transform data
between at-scale models. The mapping G : D̃ �→ D̂,  where D̃ ⊂ R

ñ is
the set of intermediate values derived from values in D by F. Hence-
forth, we refer to G as the “input filter” since it generates the input
to f in the set D̂. Likewise, the mapping g : R̂ �→ R̃, where R̃ ⊂ R

m̃,
is referred to as the “output filter” as it extracts relevant data
from the microscale model output to be passed to the macroscale
model. More complex multiscale models can, of course, be formed
through assemblies of multiple two-scale model building blocks.

Fig. 1. A two-scale model consisting of macroscale model F and microscale model f.
Two  mappings transform data between scales: the input filter G which transforms
data into an appropriate form for the microscale model and the output filter g which
extracts relevant data from the microscale model to inform the macroscale model.

The computational framework closely follows the heterogeneous
multiscale method for multiscale model development in which a
macroscale model obtains missing required data through the con-
strained evaluation of a microscale model [26].

The essential component of the scale-bridging framework is the
Evaluation Module, which coordinates the interaction between F
and f. We refer to the act of sending of ũ ∈ D̃ from F to the Eval-
uation Module as an “evaluation request” owing to the fact that
this action initiates the process of computing the value of (evalu-
ating) f (û) for D̂ � û = G(ũ). The Evaluation Module serves to: (1)
collect requests for evaluation of f from F; (2) apply the input fil-
ter to the evaluation requests to prepare input data for microscale
models; (3) schedule evaluation requests on available resources;
(4) monitor progress of evaluations to detect completion and han-
dle failures; and (5) apply the output filter to extract relevant
data from completed f evaluations to return to F. The use of the
Evaluation Module offers practical benefits for the construction of
multiscale models. First and foremost, microscale models can be
incorporated into a multiscale model without the need to mod-
ify their computer implementations. Similarly, minimal changes
are required to the implementation of a macroscale model and
amount to merely adding a function call to request an evalu-
ation of the microscale model. Second, the separation between
the two  at-scale models allows for their asynchronous evaluation
on potentially disparate computational resources. For example,
the macroscale model may  execute on a conventional processor,
while the microscale model on a co-processor. An illustration of a
potential layout for a multiscale application employing Evaluation
Module on a parallel computer is given in Fig. 2a.

2.2. Automatic surrogate model construction for scale-bridging

Many microscale models routinely encountered in practice are
very computationally demanding. For example, dissipative par-
ticle dynamics models containing a modest number of particles
may  often require hours of compute time [27]. Further, when
chemical reactions are treated within dissipative particle dynam-
ics models, days of compute time may be necessary per a single
simulation [28]. Under such circumstances, the computational cost
of a multiscale model may  render its use utterly impractical, espe-
cially when a repeated evaluation of a costly microscale model is
needed. However, in many applications the macroscale model con-
fines the microscale model to a region of its configurational space.
Then, it may  be advantageous to utilize previous evaluations of the
microscale model to construct an approximation to it: a surrogate
model. Hereafter, we  refer to a surrogate model corresponding to
the microscale as fε.
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