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a  b  s  t  r  a  c  t

A  fully  parallel  ensemble  data  assimilation  and  forecasting  system  has been  developed  for  the  Red  Sea
based  on  the MIT  general  circulation  model  (MITgcm)  to  simulate  the  Red  Sea circulation  and  the  Data
Assimilation  Research  Testbed  (DART)  ensemble  assimilation  software.  An  important  limitation  of oper-
ational  ensemble  assimilation  systems  is  the  risk  of ensemble  members’  collapse.  This  could  happen  in
those  situations  when  the filter  update  step  imposes  large  corrections  on  one,  or  more,  of  the  forecasted
ensemble  members  that  are  not  fully  consistent  with  the  model  physics.  Increasing  the  ensemble  size
is  expected  to improve  the  assimilation  system  performances,  but obviously  increases  the  risk  of  mem-
bers’  collapse.  Hardware  failure  or slow  numerical  convergence  encountered  for some  members  should
also occur  more  frequently.  In this  context,  the  manual  steering  of  the whole  process  appears  as  a  real
challenge  and  makes  the  implementation  of  the  ensemble  assimilation  procedure  uneasy  and  extremely
time  consuming.

This  paper  presents  our efforts  to build  an  efficient  and  fault-tolerant  MITgcm-DART  ensemble  assimila-
tion  system  capable  of  operationally  running  thousands  of  members.  Built  on  top  of  Decimate,  a  scheduler
extension  developed  to ease  the  submission,  monitoring  and dynamic  steering  of  workflow  of  dependent
jobs  in  a fault-tolerant  environment,  we  describe  the  assimilation  system  implementation  and  discuss  in
detail its  coupling  strategies.  Within  Decimate,  only  a few additional  lines  of  Python  is needed  to  define
flexible  convergence  criteria  and  to implement  any  necessary  actions  to the  forecast  ensemble  members,
as for  instance  (i) restarting  faulty  job  in case  of  job  failure,  (ii)  changing  the  random  seed in case  of
poor  convergence  or numerical  instability,  (iii)  adjusting  (reducing  or increasing)  the  number  of  parallel
forecasts  on  the  fly,  (iv)  replacing  members  on  the  fly  to enrich  the  ensemble  with  new  members,  etc.

We  demonstrate  the  efficiency  of  the  system  with  numerical  experiments  assimilating  real  satellites
sea  surface  height  and  temperature  observations  in  the  Red  Sea.

©  2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Capabilities in ocean modeling and simulation have witnessed
tremendous progress in recent years following the advances in high
performance computing (HPC) resources [12], the better under-
standing of the ocean physics, and the availability of ever increasing
amount of in situ and remotely sensed data [14,10]. To take advan-
tage of all sources of information from models and observations,
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data assimilation, the process by which observations are incor-
porated into the model, is becoming more and more popular to
improve the model forecasting skills along with quantification of
uncertainties in its outputs [8]. Data assimilation is now recognized
as a crucial component for the development of an ocean operational
system.

The celebrated Kalman filter (KF) computes the best (minimum-
variance) estimate of a linear dynamical system given available
observations [23], and as such provides a readily efficient algorithm
for data assimilation and forecasting [18]. Because of its prohibitive
computational requirements when implemented with large scale
systems and the nonlinear nature of the ocean dynamics, simplified
Kalman filters have been introduced for ocean data assimilation
[36,40,18]. One of the most promising Kalman filtering schemes
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is the ensemble Kalman filter (EnKF), a Monte Carlo approach in
which the forecast statistics are estimated from an ensemble of
model forecasts [21]. An EnKF assimilation system with a high res-
olution model and large number of observations is expected to
require a large ensemble to provide accurate ocean state estimates
[20,17]. Large ensembles should provide more reliable forecast
statistics and a smooth forecast covariances for efficient implemen-
tation of the filter update steps with the observations.

Increasing the ensemble size would however not only signifi-
cantly increase the computational load, but would also weaken the
robustness of the system and increase the chances of system fail-
ure, and thus the workload of the user. Indeed, in case the system
crashes, the user will have to manually identify the issue behind its
collapse, reconfigure the system and check for consistency before
relaunching the jobs. The system failures may  be related to a
machine problem or may  be the result of a dynamical inconsis-
tency between the statistically updated ensemble members and the
forecasting model, both of which are unpredictable. The users need
therefore to continuously monitor the system execution progress.

In an operational ocean forecasting system, not only huge
amount of data need to be processed in a timely manner [33], but
the system should also be fault-tolerant in order to recover from
failure and deliver real-time responses. In this study, we  address
these ensemble data assimilation forecasting challenges with an
EnKF data assimilation system that we configured for the Red Sea.
The system is complex and brings together different components
(program executables, data, computational resources). An ensem-
ble of MIT  general circulation model (MITgcm) runs are integrated
in parallel to provide the forecast statistics for the Data Assimi-
lation Research Testbed (DART) filter to perform the assimilation
update with the observations. To overcome the aforementioned
problems, and build an efficient fault-tolerant ensemble system
we coupled the existing DART-MITgcm assimilation system [39]
to a scheduler extension named Decimate [26]. The system in [39]
was neither fault-tolerant nor scalable to ensembles of thousands
of members, hence the use of Decimate to remediate those limi-
tations. Decimate automatically generates the submission scripts
along with the dependencies between the jobs and runs them in
an environment where checking and restarting functions just need
to be defined by the user. It simplifies the launching and monitor-
ing processes and allows for automatic reconfiguration in case of
system failure. This work describes the development of the differ-
ent components of the assimilation system, their coupling and the
parametrization of Decimate. First results from a high resolution
ensemble assimilation system for the Red Sea are presented and
discussed.

The paper is organized as follows. We  first give an overview
of ensemble data assimilation concept and the DART-MITgcm Red
Sea forecasting system in Section 2. Section 3, briefly describes
Decimate on top of which the DART-MITgcm assimilation system
was implemented. Section 4 presents the results of the assimila-
tion experiments that has been conducted in the Red Sea. Finally, a
brief summary and discussion is given in Section 5.

2. Ensemble data assimilation and the DART-MITgcm
system

2.1. Ensemble data assimilation

We  follow a Bayesian filtering formulation of the data assim-
ilation problem in which we aim at sequentially computing the
probability distribution of the state vector of the system of interest
xk at time k conditional on the available measurements y1:k ≡ y1,
y2, · · ·,  yk up to time k, that is the posterior probability distribution

p(xk|y1:k) using Bayes’ rule [20]. Given an initial distribution p(x0),
the measurements y1:k, the state space model

xk = Mk(xk−1) + �k (1)

yk = Hk(xk) + εk (2)

from which one can obtain the transition distribution p(xk|xk−1)
and the likelihood p(yk|xk), the computation can be performed
recursively to incorporate the new observation yk into the poste-
rior p(xk−1|y1:k−1) at time k − 1 to obtain the posterior p(xk|y1:k) at
time k. Mk is the dynamical model for advancing the state vector
xk−1 from time k − 1 to time k, and Hk is the measurement model
(or observation operator) at time k. �k and εk respectively refer to
independent Gaussian model and observation errors.

Given p(xk−1|y1:k−1), the Chapman–Kolmogorov equation

p(xk|y1:k−1) =
∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

is used to forecast the state probability distribution at the next
time with the dynamical model (1), computing the distribution
of xk conditional on the observations up to time k − 1. Bayes’ rule
is then applied to update the forecast distribution with (the new
observation) yk to obtain the posterior probability distribution

p(xk|y1:k) = p(yk|xk)p(xk|y1:k−1)
p(yk|y1:k−1)

.

This forecast-update cycling process is then repeated whenever a
new observation is available.

Bayesian filtering finds applications in many fields including
signal processing, meteorology, oceanography, hydrology, finance,
motion tracking (of fluids, satellites, airplanes, etc.), among others.

A special case of the Bayesian filter is the Kalman filter, which
is designed for linear systems based on orthogonal projections
[23,34]. Under the assumption of independent Gaussian model �
and observation ε noise, the Kalman filter is optimal in the sense
that it computes the best linear unbiased estimate (BLUE). More-
over, due to appealing features, namely easy of implementation,
Markovian property (or memory less feature), and sequential pro-
cess for incorporating the observations, it is widely used in many
fields. Nevertheless in oceanography, where the state dimension
could be very large (107 or more) and the dynamics are strongly
nonlinear, a direct implementation of the Kalman filter is not fea-
sible [18,20].

To overcome this problem, Evensen [11] introduced the
so-called ensemble Kalman filter (EnKF) as a Monte Carlo imple-
mentation of the Kalman filter. In the EnKF, a given (analysis)
ensemble of state realization Xf = [xa,1, xa,2, · · ·,  xa,N] is advanced
with the dynamical model (1) to compute the forecast ensem-
ble, from which the covariance matrix Pf used to compute the
Kalman Gain is approximated by Pf,e = 1

N−1 (X ′X ′T ), where X ′ =
[xf,1 − x̄, xf,2 − x̄, . . .,  xf,N − x̄] is the ensemble of anomalies and
x̄ = 1

N

∑N
i=1xf,i the ensemble mean. Once yk becomes available, each

member of the forecast ensemble is updated using the Kalman filter
update step

xa,i
k

= xf,i
k

+ Kk
(

yok + εik − Hkx
f,i
k

)
, i = 1, . . .,  N (3)

where Kk is the Kalman Gain

Kk =
(

HkP
f,e
k

)T[
Hk

(
HkP

f,e
k

)T
+ Rk

]−1

, (4)

and εi
k

is sampled from the distribution of the observation error,
assumed N(0,  Rk) [9]. This directly provides an ensemble to start
the next assimilation (forecast-analysis) cycle. Perturbing the
observations was however shown to introduce noise in the update
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