
Journal of Computational Science 27 (2018) 255–270

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Sparse supernodal solver using block low-rank compression: Design,
performance and analysis

Grégoire Pichon a,∗, Eric Darve b, Mathieu Faverge a, Pierre Ramet a, Jean Roman a

a Inria, CNRS (LaBRI UMR 5800), Bordeaux INP, Université de Bordeaux, 33400 Talence, France
b Mechanical Engineering Department, Stanford University, United States

a r t i c l e i n f o

Article history:
Received 28 December 2017
Received in revised form 11 June 2018
Accepted 13 June 2018
Available online 18 June 2018

Keywords:
Sparse linear solver
Block low-rank compression
PaStiX sparse direct solver
Multi-threaded architectures

a b s t r a c t

This paper presents two approaches using a Block Low-Rank (BLR) compression technique to reduce
the memory footprint and/or the time-to-solution of the sparse supernodal solver PaStiX. This flat,
non-hierarchical, compression method allows to take advantage of the low-rank property of the blocks
appearing during the factorization of sparse linear systems, which come from the discretization of partial
differential equations. The proposed solver can be used either as a direct solver at a lower precision or as a
very robust preconditioner. The first approach, called Minimal Memory, illustrates the maximum memory
gain that can be obtained with the BLR compression method, while the second approach, called Just-In-
Time, mainly focuses on reducing the computational complexity and thus the time-to-solution. Singular
Value Decomposition (SVD) and Rank-Revealing QR (RRQR), as compression kernels, are both compared
in terms of factorization time, memory consumption, as well as numerical properties. Experiments on a
shared memory node with 24 threads and 128 GB of memory are performed to evaluate the potential of
both strategies. On a set of matrices from real-life problems, we demonstrate a memory footprint reduc-
tion of up to 4 times using the Minimal Memory strategy and a computational time speedup of up to 3.5
times with the Just-In-Time strategy. Then, we study the impact of configuration parameters of the BLR
solver that allowed us to solve a 3D laplacian of 36 million unknowns a single node, while the full-rank
solver stopped at 8 million due to memory limitation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many scientific applications such as electromagnetism, geo-
physics or computational fluid dynamics use numerical models that
require to solve linear systems of the form Ax = b, where the matrix
A is sparse and large. In order to solve these problems, a classic
approach is to use a sparse direct solver which factorizes the matrix
into a product of triangular matrices before solving triangular sys-
tems.

Yet, there are still limitations to solve larger and larger systems
in a black-box approach without any knowledge of the geometry of
the underlying partial differential equation. Memory requirements
and time-to-solution limit the use of direct methods for very large
matrices. On the other hand, for iterative solvers, general black-box
preconditioners that can ensure fast convergence for a wide range
of problems are still missing.

In the context of sparse direct solvers, some recent works
have investigated the low-rank representations of dense blocks
appearing during the sparse matrix factorization, by compressing

∗ Corresponding author.

blocks through many possible compression formats such as Block
Low-Rank (BLR), H, H2, HSS, HODLR. . . These different approaches
reduce the memory requirement and/or the time-to-solution of
the solvers. Depending on the compression strategy, these solvers
require knowledge of the underlying geometry to tackle the prob-
lem or can do it in a purely algebraic fashion.

Hackbusch [1] introduced the H-LU factorization for dense
matrices. It compresses the matrix into a hierarchical matrix format
before applying low-rank operations instead of classic dense oper-
ations. The dense solver was extended to consider sparse matrices
by using a nested dissection ordering to exhibit the hierarchical
structure, as summarized in [2].

In [3], H-LU factorization is used in an algebraic context. Perfor-
mance, as well as a comparison of H-LU with some sparse direct
solvers is presented in [4]. Kriemann [5] and Lizé [6] implemented
this algorithm using Directed Acyclic Graphs.

The Hierarchically Off-Diagonal Low-Rank (HODLR) compres-
sion technique was used in [7] to accelerate the elimination of
large dense fronts appearing in the multifrontal method. It was
fully integrated in a sparse solver in [8], and uses Boundary Dis-
tance Low-Rank (BDLR) to allow both time and memory savings,
by avoiding the formation of dense fronts.

https://doi.org/10.1016/j.jocs.2018.06.007
1877-7503/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jocs.2018.06.007
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2018.06.007&domain=pdf
https://doi.org/10.1016/j.jocs.2018.06.007

256 G. Pichon et al. / Journal of Computational Science 27 (2018) 255–270

A supernodal solver using a compression technique similar
to HODLR was presented in [9]. The proposed approach allows
memory savings and can be faster than standard preconditioning
techniques. However, it is slower than the direct approach in the
benchmarks and requires an estimation of the rank to use random-
ized techniques and to accelerate the solver.

The use of Hierarchically Semi-Separable (HSS) matrices in
sparse direct solvers has been investigated in several solvers. In
[10], Xia et al. presented a solver for 2D geometric problems, where
all operations are computed algebraically. In [11], a geometric
solver was developed, but contribution blocks are not compressed,
making memory savings limited. [12,13] proposed an algebraic
code that uses randomized sampling to manage low-rank blocks
and to allow memory savings.
H2 arithmetic [14] has been used in several sparse solvers. In

[15], a fast sparse H2 solver, called LoRaSp, based on extended spar-
sification was introduced. In [16], a variant of LoRaSp, aiming at
improving the quality of the solver when used as a preconditioner,
was presented, as well as a numerical analysis of the convergence
with H2 preconditioning. In particular, this variant was shown to
lead to a bounded number of iterations irrespective of problem size
and condition number (under certain assumptions). In [17] a fast
sparse solver was introduced based on interpolative decomposition
and skeletonization. It was optimized for meshes that are pertur-
bations of a structured grid. In [18], an H2 sparse algorithm was
described. It is similar in many respects to [15], and extends the
work of [17]. All these solvers have a guaranteed linear complex-
ity, for a given error tolerance, and assuming a bounded rank for
all well-separated pairs of clusters (the admissibility criterion in
Hackbusch et al.’s terminology).

Block Low-Rank compression has been investigated for dense
matrices [19,20], and for sparse linear systems when using a mul-
tifrontal method [21,22]. Considering that these approaches are
similar to the current study, a detailed comparison will be described
in Section 6. One of the differences of our approach with [22] is the
supernodal context that leads to different low-rank operations, and
possibly increases the memory savings. The main contribution of
our work is the use of low-rank assemblies to avoid forming dense
updates and to maximize memory savings.

The first objective of this work is to combine a generic sparse
direct solver with recent work on matrix compression to solve
larger problems, overcoming the memory limitations and accel-
erating the time-to-solution. The second objective is to keep the
black-box algebraic approach of sparse direct solvers, by relying on
methods that are independent of the underlying problem geom-
etry. In this paper, we consider the multi-threaded sparse direct
solver PaStiX [23] and we introduce a BLR compression strategy
to reduce its memory and computational cost. We developed two
strategies: Minimal Memory, which focuses on reducing the mem-
ory consumption, and Just-In-Time which focuses on reducing the
time-to-solution (factorization and solve steps).

During the factorization, the first strategy compresses the sparse
matrix before factorizing it, i.e. compresses A factors, and exploits
dedicated low-rank numerical operations to keep the memory cost
of the factorized matrix as low as possible. The second strategy
compresses the information as late as possible, i.e. compresses L fac-
tors, to avoid the cost of low-rank update operations. The resulting
solver can be used either as a direct solver for low accuracy solu-
tions or as a high-accuracy preconditioner for iterative methods,
requiring only a few iterations to reach the machine precision. The
main contribution of this work is the introduction of low-rank com-
pression in a supernodal solver with a purely algebraic method.
Indeed, contrary to [9] which uses rank estimations (i.e. a non-
algebraic criteria), our solver computes suitable ranks to maintain
a prescribed accuracy.

A preliminary version of this work appeared in [24]. In this
paper, we introduce new orthogonalization methods for the RRQR
recompression kernels which leads to a better limitation of the rank
growth during the factorization. We present a detailed analysis of
the solver with a parallelism study and a comparison of efficiency
of the low-rank kernels with respect to the original full-rank ker-
nels. We also evaluate the impact of several parameters on the
memory consumption and time to solution such as the blocking
sizes, the maximum rank accepted for low-rank forms and the dif-
ferent orthogonalization methods. In Section 2, we go over basic
aspects of sparse supernodal direct solvers. The two strategies,
introduced in PaStiX, are then presented in Section 3, before detail-
ing low-rank kernels in Section 4. Section 5 compares the two BLR
strategies with the original approach, that uses only dense blocks,
in terms of memory consumption, time-to-solution and numerical
behaviour. We also investigate the efficiency of low-rank kernels, as
well as the impact of the BLR solver parameters. Section 6 surveys
in more detail related works on BLR for dense and/or sparse direct
solvers, highlighting the differences with our approach, before dis-
cussing how to extend this work to a hierarchical format (H, HSS,
HODLR. . .).

2. Background on sparse linear algebra

The common approach used by sparse direct solvers is com-
posed of four main steps: (1) ordering of the unknowns, (2)
computation of a symbolic block structure, (3) numerical block fac-
torization, and (4) triangular system solves. In the rest of the paper,
we consider that all problems have a symmetric pattern given by
the pattern of A + At.

The purpose of the first step is to minimize the fill-in — zero
becoming non-zero — that occurs during the numerical factoriza-
tion to reduce the number of operations as well as the memory
requirements to solve the problem. In order to both reduce fill-
in and exhibit parallelism, the nested dissection [25] algorithm is
widely used through libraries such as Metis [26] or Scotch [27].
Each set of vertices corresponding to a separator constructed during
the nested dissection is called a supernode.

From the resulting supernodal partition, the second step pre-
dicts the symbolic block structure of the final factorized matrix (L)
and the block elimination tree. This block structure is composed of
one block of columns (column block) for each supernode of the par-
tition, with a dense diagonal block and several dense off-diagonal
blocks, as presented in Fig. 1 for a 3D Laplacian.

The goal is to exhibit large block structures to leverage efficient
Level 3 BLAS kernels during the numerical factorization. However,
one may notice (cf. Fig. 1) that the symbolic structure obtained with
a general partitioning tool might be composed of many small off-
diagonal blocks contributing to larger blocks. These off-diagonal
blocks might be grouped together by adding zero to the structure if
the BLAS efficiency gain is worthwhile and if the memory overhead
induced by the fill-in is limited. Alternatively, it is also possible to
reorder supernode unknowns to group off-diagonal blocks together
without additional fill-in. A traveling salesman strategy is imple-
mented in PaStiX [28] and divides by more than two the number
of these off-diagonal blocks. Other approaches [12,21] perform a k-
way ordering of supernodes, starting from a reconnected graph of a
separator, to order consecutively vertices belonging to a same local
part of the separator’s graph. Such reordering technique also allows
to reduce ranks of the low-rank blocks as shown in [21]. To intro-
duce more parallelism and data locality, the final structure can then
be split into tiles as it is now commonly done in dense linear algebra
libraries to fit the computational units granularity. These first two
steps of direct solvers are preprocessing stages independent from
the numerical values. Note that these steps can be computed once

Download English Version:

https://daneshyari.com/en/article/6874329

Download Persian Version:

https://daneshyari.com/article/6874329

Daneshyari.com

https://daneshyari.com/en/article/6874329
https://daneshyari.com/article/6874329
https://daneshyari.com

