
Journal of Computational Science 27 (2018) 303–319

Contents lists available at ScienceDirect

Journal of Computational Science

journa l homepage: www.e lsev ier .com/ locate / jocs

Demonstrating GPU code portability and scalability for radiative heat
transfer computations

Brad Peterson a,∗, Alan Humphrey a, John Holmen a, Todd Harman a, Martin Berzins a,
Dan Sunderland b, H. Carter Edwards c

a Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
b Sandia National Laboratories, PO Box 5800/MS 1418, Albuquerque, NM 87175, USA
c NVIDIA Corporation, 2788 San Tomas Expressway, Santa Clara, CA 95051, USA

a r t i c l e i n f o

Article history:
Received 29 December 2017
Received in revised form 21 April 2018
Accepted 10 June 2018
Available online 15 June 2018

Keywords:
Asynchronous many-task runtime
GPU
Scalability
Portability
Radiative heat transfer

a b s t r a c t

High performance computing frameworks utilizing CPUs, Nvidia GPUs, and/or Intel Xeon Phis necessitate
portable and scalable solutions for application developers. Nvidia GPUs in particular present numerous
portability challenges with a different programming model, additional memory hierarchies, and parti-
tioned execution units among streaming multiprocessors. This work presents modifications to the Uintah
asynchronous many-task runtime and the Kokkos portability library to enable one single codebase for
complex multiphysics applications to run across different architectures. Scalability and performance
results are shown on multiple architectures for a globally coupled radiation heat transfer simulation,
ranging from a single node to 16,384 Titan compute nodes.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The need to solve larger and more complex simulation problems
while at the same time not incurring additional power costs has led
to an increasing focus on GPU and Intel Xeon Phi-based architec-
tures. Many current and future high performance computing (HPC)
systems rely on such architectures. In the case of the DOE Titan
system, with a theoretical peak performance of 27 petaflops, over
90% of the computational power come from its 18,688 GPUs. These
heterogeneous systems pose significant challenges in terms of pro-
grammability due to deep memory hierarchies, vendor-specific
language extensions and memory constraints, e.g. less device-side
memory compared to host memory per node. This paper focuses on
scalability, portability, and programmability of multiphysics appli-
cations. This work covers (1) scalability improvements necessary
to compute a radiation transport problem on 16,384 GPUs on Titan
using the Uintah asynchronous many-task runtime, and (2) porta-
bility improvements necessary to utilize a single codebase capable
of execution on nodes containing CPUs, GPUs, and/or Intel Xeon Phi
processors. Nvidia GPUs receive particular emphasis as they intro-
duce four challenges distinct from the CPU execution model: (1)

∗ Corresponding author.
E-mail address: bradp@cs.utah.edu (B. Peterson).

task asynchrony, (2) multiple memory spaces, (3) an additional pro-
gramming model (e.g. CUDA), and (4) another level of parallelism
through partitioned execution units among streaming multipro-
cessors.

Uintah’s emphasis on scalability across a diverse set of HPC
architectures is currently driven by the target problem of the Uni-
versity of Utah Carbon Capture Multidisciplinary Simulation Center
(CCMSC), funded by the NNSA Predictive Science Academic Alliance
Program (PSAAP) II. The CCMSC aims to simulate, using petas-
cale/exascale computing, a 1000 MWe oxy-fired clean coal boiler
being developed by Alstom Power to deliver high efficiency elec-
tric power generation with carbon capture. A primary CCMSC focus
is on using extreme-scale computing for reacting, large eddy simu-
lation (LES)-based codes within the Uintah open source framework,
using machines like Titan and the upcoming Summit system in
a scalable manner. The physical size of the CCMSC target boiler
simulations and the resolution required to resolve the dominant
physical processes necessitates the use of systems like DOE Titan
at near-capacity.

Radiation is the dominant mode of heat transfer in these boiler
simulations. A principal challenge in modeling radiative heat trans-
fer is the nonlocal nature of it. Thermal energy propagates across
the entire computational domain from any point in space. Our radi-
ation model, a reverse Monte Carlo ray tracing (RMCRT) technique
[1], described further in Section 3 requires an all-to-all communi-

https://doi.org/10.1016/j.jocs.2018.06.005
1877-7503/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jocs.2018.06.005
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2018.06.005&domain=pdf
mailto:bradp@cs.utah.edu
https://doi.org/10.1016/j.jocs.2018.06.005

304 B. Peterson et al. / Journal of Computational Science 27 (2018) 303–319

cation to replicate the radiative properties and boiler geometry on
each node to facilitate local ray tracing. This challenge is addressed
by leveraging Uintah’s adaptive mesh refinement (AMR) capabil-
ities, using Cartesian mesh patches to generate a fine mesh that
is only used locally (close to each grid point) and a successively
coarser mesh is used further away, via a level-upon-level approach.
This approach is fundamental to the CCMSC target problem, where
the entire computational domain needs to be resolved to ade-
quately model the radiative heat flux. Using this approach enabled
excellent strong scaling to over 256K CPU cores on the DOE Titan
system for problem sizes that were previously intractable with a
single fine mesh (single-level) RMCRT approach due to on-node
memory constraints [1]. This scaling was consistent with the com-
munication and computation model [1].

The challenges in moving from a CPU to a GPU-based multi-
level RMCRT algorithm using this mesh refinement approach have
extended well beyond what a typical GPU port of a CPU codebase
might entail. A core Uintah design focuses on insulating the applica-
tion developer from the underlying runtime, which requires more
automation of runtime features. Uintah’s runtime requires that all
host-to-device and device-to-host data copies for computational
task dependencies (inputs and outputs), as well as device con-
text management must be handled automatically in the same way
MPI messages are generated by the Uintah runtime system [2–4].
Meeting these challenges required numerous runtime changes to
support the RMCRT problem on Titan’s GPUs.

This paper is an extended form of the workshop paper [5], which
addressed scalability and runtime improvements necessary to run
this difficult globally-coupled, all-to-all problem to 16,384 GPUs
on the DOE Titan system. This extended paper addresses the porta-
bility challenges of implementing RMCRT into one single portable
codebase using the Kokkos portability library and executing this
code on CPUs, GPUs, and Intel Xeon Phi Knights Landing (KNL)
architectures.

Prior to this work, Uintah’s use of Kokkos has been limited to
support for CPU and Xeon Phi processors [6]. This work extends
portability support to the GPU. Special focus is given to GPU
portability enabling Kokkos to now efficiently execute Uintah’s
fine-grained tasks on GPUs. In particular, modifications are made
to Kokkos itself to enable GPU asynchronous and performant exe-
cution of parallel work loops with fewer iterations (i.e. an iteration
range the low hundreds). This work also describes modifications for
GPU portability that affected Xeon Phi performance and describes
how it was addressed to enable one portable codebase across
three architectures. Intel Xeon Phi portable performance has been
addressed in prior work [6], and does not need to be extended here.

The contributions from the original paper [5] are:

(i) Leveraging Uintah’s AMR infrastructure in a novel way to
reduce the volume of communication sufficiently so as to allow
scalability. Uintah’s AMR capabilities are introduced in Section
2, along with an overview of Uintah.

(ii) Changing the way that AMR meshes are stored on the GPU to
overcome the limited available GPU global memory. This has
entailed a significant extension of the Uintah GPU DataWare-
house system [7] to support a mesh-level database, a repository
for shared, per-mesh-level variables such as global radiative
properties. This has allowed multiple mesh patches, each with
associated GPU tasks, to run concurrently on the GPU while
sharing coarse, radiation mesh data. This extension of the GPU
DataWarehouse is discussed in Section 3, which also gives an
overview on radiation transport and describes a GPU-based
multi-level RMCRT model.

(iii) The introduction of novel non-blocking, thread-scalable data
structures for managing asynchronous MPI communication
requests, replacing previously problematic mutex-protected

vectors of MPI communication records. To be non-blocking a
wait, failure, or resource allocation by one thread cannot block
progress on any other thread. Non-blocking data-structures are
lock-free if at all steps at least one thread is guaranteed to make
progress, and are wait-free if at any step all threads are guaran-
teed to make progress [8]. Section 4 describes these changes and
their motivation, and also shows speedups in local MPI com-
munication times made possible through these infrastructure
improvements.

(iv) A vastly improved memory allocation strategy to reduce heap
fragmentation is covered in Section 4. This strategy allows run-
ning simulations at the edge of the nodal memory footprint on
machines like Titan.

(v) Determining optimal fine mesh patch sizes to yield GPU
performance while maintaining over-decomposition of the
computational domain to hide latency. This is covered in Sec-
tion 5 with strong scaling results over a wide range of GPU
counts up to 16,384 GPUs, and also show the results of differing
over-decomposition configurations across this range of GPUs.

The four major extensions to this paper from the prior paper [5]
are:

• Using and modifying Kokkos to improve performance portability
on GPUs. Kokkos’s current GPU execution model is bulk syn-
chronous, where a parallel loop is partitioned into many CUDA
blocks and the GPU distributes those blocks throughout the GPU
device. However, the Uintah asynchronous many-task runtime
is designed to asynchronously execute many overlapping finer-
grained tasks, many of which require only one CUDA block each.
Section 6 describes modifications to Kokkos’s GPU execution
model so that it is no longer bulk synchronous and can instead
overlap many smaller asynchronous execution units.

• Section 7 reviews prior Intel Xeon Phi performance portability
work [6] for Uintah and describes portability challenges relating
to architecture specific iteration patterns.

• The integration of GPU portability into Kokkos and Uintah is
given in Section 8. The challenges here include using Uintah’s
own memory management system within Kokkos, using Kokkos’s
portable random number library, and supplying task execution
parameters for many architectures.

• Results of running portable code on multiple architectures is
given in Section 9. In particular, the results compare three
codebases: (1) prior CPU code, (2) prior GPU code, and (3) Kokkos-
enabled code. Portability is demonstrated on CPUs, GPUs, and
Intel Xeon Phi KNLs. GPU portability is shown before and after
Kokkos modifications from Section 6.

An overview of related work is given in Section 10, and the paper
concludes in Section 11 with future work in this area.

2. The Uintah code

The Uintah asynchronous many-task (AMT) runtime [2,9] is
open-source (MIT License) software that has been widely ported
and used for many different types of problems involving fluids,
solids, and fluid-structure interaction problems [9], with the lat-
est release in September 2017 [10]. Uintah consists of a set of
parallel software components and libraries that facilitate the solu-
tion of partial differential equations on structured AMR grids.
Uintah presently contains four main simulation components: (1)
the multi-material ICE [11] code for compressible flows; (2) the
particle-based code MPM [12] for structural mechanics; (3) the
combined fluid-structure interaction (FSI) algorithm MPM-ICE [13],
and (4) the ARCHES turbulent reacting CFD component [14] that

Download English Version:

https://daneshyari.com/en/article/6874330

Download Persian Version:

https://daneshyari.com/article/6874330

Daneshyari.com

https://daneshyari.com/en/article/6874330
https://daneshyari.com/article/6874330
https://daneshyari.com

