
Journal of Computational Science 27 (2018) 329–344

Contents lists available at ScienceDirect

Journal of Computational Science

journa l homepage: www.e lsev ier .com/ locate / jocs

Synapse: Synthetic application profiler and emulator

Andre Merzky ∗, Ming Tai Ha, Matteo Turilli, Shantenu Jha
RADICAL Laboratory, Electric and Computer Engineering, Rutgers University, New Brunswick, NJ, USA

a r t i c l e i n f o

Article history:
Received 27 January 2018
Received in revised form 1 June 2018
Accepted 26 June 2018
Available online 2 July 2018

Keywords:
Emulation
Profiling

a b s t r a c t

Motivated by the need to emulate workload execution characteristics on high-performance and dis-
tributed heterogeneous resources, we introduce Synapse. Synapse is used as a proxy application (or
“representative application”) for real workloads, with the advantage that it can be tuned in different ways
and dimensions, and also at levels of granularity that are not possible with real applications. Synapse has
a platform-independent application profiler, and has the ability to emulate profiled workloads on a vari-
ety of resources. Experiments show that the automated profiling performed using Synapse captures an
application’s characteristics with high fidelity. The emulation of an application using Synapse can repro-
duce the application’s execution behavior in the original runtime environment, and can also reproduce
those behaviors on different run-time environments.

© 2018 Published by Elsevier B.V.

1. Introduction

A large body of research in high-performance and distributed
computing is concerned with the design, implementation and opti-
mization of tools, runtime systems and services in support of
scientific applications. These tools, systems and services, often
subsumed under the term “middleware”, require extensive and
continuous development, testing and optimization based on var-
ious, real-life applications and production-grade infrastructures.

The use of scientific applications for developing middleware
present three main challenges: large amount of deployment
requirements; domain-specific knowledge for successful and rep-
resentative execution; and limited portability and scalability.
Synthetic applications—also known as Skeletons, Representative,
or Artificial Applications—help to address these challenges by
working as proxies of real-life applications.

Synthetic applications capture the relevant properties of appli-
cations, minimizing deployment requirements and eliminating the
need of domain-specific knowledge for their execution. Further,
they enable tuning application parameters relevant to scientific
middleware development. Often, parameters like precise runtime,
number of computational cycles, memory footprint or I/O patterns
cannot be precisely tuned in real-life applications.

A tradeoff in the design and implementation of synthetic appli-
cations for use as proxy applications is the need to be simple and
general-purpose and to be able to emulate the behavior of each

∗ Corresponding author.
E-mail address: andre@merzky.net (A. Merzky).

application with the highest level of accuracy and fidelity pos-
sible. Achieving this level of accuracy and fidelity is particularly
challenging when an emulation is used on multiple heterogeneous
resources. It is even more challenging when the resources used for
emulation are different from the resource on which the applica-
tion(s) was profiled.

In response to these requirements and tradeoffs, we have devel-
oped Synapse: a SYNthetic Application Profiler and Emulator. Synapse
is primarily motivated by the need for automated and system-
independent application profiling in computational science, where
the multitude and generality of applications and platforms are
more important than cycle-level accuracy and fidelity. Accordingly,
Synapse is designed to provide uniform profiling capabilities across
a range of application types, tools and services, while achieving a
sufficient level of accuracy and fidelity.

Synapse acts as a proxy application to circumvent the limitations
and complexity of scientific applications. For example, scientific
applications are not infinitely malleable because of the fixed and
often discrete physical sizes of input systems; they have limited
tunability as parameters can be modified only in discrete steps over
a limited range of values. Synapse can profile an application for
given parameter values and can emulate the execution behavior of
the same application for different parameter values.

Synapse is designed to “profile once, emulate anywhere”:
Synapse determines the application’s resource consumption by
running a sample-based, black-box profiler of the application on
a machine with specific tools and permissions, and replays the
observed resource consumption patterns on an arbitrary machine.
In emulation mode, Synapse attempts to consume the same amount
of system resources (clock cycles, memory reads/writes, packet

https://doi.org/10.1016/j.jocs.2018.06.012
1877-7503/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.jocs.2018.06.012
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2018.06.012&domain=pdf
mailto:andre@merzky.net
https://doi.org/10.1016/j.jocs.2018.06.012

330 A. Merzky et al. / Journal of Computational Science 27 (2018) 329–344

sent/received) as the original application, while preserving the
overall pattern, granularity and sequence of the respective oper-
ations.

Synapse provides basic kernels functions to emulate how dif-
ferent system resources are consumed. While these kernels can be
controlled to consume the specified amount of system resources
precisely, they are less precise on how those resources are con-
sumed, i.e., in what chunkiness, granularity and order. Synapse
provides the ability for users to write their own kernels to control
more tightly how system resources are consumed. Thus, even when
different applications consume the same amount of some system
resource, Synapse can be tuned to consume system resources in a
way that better reflects how a specific application consumes the
same resource.

This paper presents the design of Synapse and progress towards
an implementation that is robust and usable. Further, we presents
six experiments to validate that Synapse’s automated profiling
indeed captures the application characteristics with fidelity. The
experiments also show that Synapse’s emulation reproduces the
application characteristics in the original runtime environment, as
well as on different resources and runtime systems.

While Synapse, and in particular its profiler, is not designed to
achieve the same accuracy as other established approaches (e.g.,
Vtune [1]), our experiments support the claim that Synapse’s emu-
lation has sufficient fidelity, generality and tunability to make it a
useful instrument for the development of middleware to support
computational science research.

In Section 2 we outline three application and systems use cases
that have motivated the development of Synapse. In Section 3,
we discuss the design and architecture of Synapse, followed by a
discussion of selected implementation details in Section 4. Exper-
iments are discussed in Section 5, followed by future and related
work.

2. A case for system-independent profiling and emulation

The development of tools for computational science and large-
scale computer science experiments needs proxy applications that
provide flexible and tunable capabilities as well as being portable
across resource types. We outline three use cases for proxy appli-
cations, each highlighting a different requirement.

2.1. High-performance task-parallel computing

Traditionally, high-performance computing (HPC) systems have
been optimized to support mostly monolithic workloads. The work-
load of many scientific applications however, are comprised of
spatially and temporally heterogeneous tasks that are often dynam-
ically inter-related [2]. These workloads can benefit from being
executed at scale on HPC resources, but a tension exists between
their resource requirements and the capabilities of HPC systems
and their usage policies. We addressed this tension by developing
RADICAL-Pilot [3], a scalable and interoperable pilot system [4].

RADICAL-Pilot provides a runtime system designed to support
a large number of concurrent tasks with low start-up over-
head. RADICAL-Pilot is agnostic to the specific properties of the
executed tasks, supporting many-node parallelism as well as sin-
gle core tasks, and both short and long running tasks. Many
components of RADICAL-Pilot are designed and parameterized
to provide balanced performance while being as agnostic as
possible to task and resource properties. For example, RADICAL-
Pilot’s task execution component, the RP Agent, has to be
engineered for optimal resource utilization while maintaining
full generality in many different dimensions, like MPI/non-MPI;
OpenMP/multi-threaded/single-threaded; CPU/GPU/accelerators;

single-node/multi-node; homogeneous/heterogeneous tasks and
clusters; or different batch systems.

We can support the design and testing of RADICAL-Pilot by
tuning the properties of a single proxy application instead of refac-
toring multiple scientific applications. For example, we can profile
a single-threaded scientific application and then emulate it as a
mixed OpenMPI or MPI proxy application on an arbitrary resource.
Analogously, we can increase the amount of memory required by
the same proxy application to a specific value, even if the science
problem of the profiled application does not require that amount
of memory.

2.2. Abstractions and middleware for distributed computing

In spite of significant progress in scientific distributed com-
puting over the past decade, there are few general-purpose
abstractions that support a principled development of middleware
for large-scale and distributed execution of applications. As a con-
sequence, many software point-solutions exist that are tailored
to specific workloads or resource types but few middleware are
capable of supporting arbitrary applications on arbitrary types of
resources. The DOE AIMES project contributed to address this prob-
lem by defining general-purpose abstractions and developing a
middleware for distributing the execution of large-scale applica-
tions across multiple resources [5].

AIMES assumed the use of third-party tools to manage depen-
dences among tasks of scientific application. As a consequence,
the main challenges in generalizing the capabilities of the AIMES
middleware to different applications on different types of resource
were primarily related to implementation and deployment. A proxy
application that can emulate the execution behavior of actual work-
loads would play an important role in the validation and extension
of base AIMES abstractions and middleware. Proxy applications
have the advantage of capturing relevant application properties
without exposing the complexity of running these applications on
distinct platforms.

2.3. Toolkits for computational science

Many scientific applications in the field of molecular sciences,
computational biology [6], astrophysics [7], weather forecasting
[8], and bioinformatics [9] are increasingly reliant on ensemble-
based methods to make scientific progress. Ensemble-based
applications vary in the degree of coupling and dependency
between tasks, and in heterogeneity across tasks. In spite of the
apparent simplicity of running ensemble-based applications, the
scalable and flexible execution of a large set of tasks is non-trivial.

As a consequence of complexity and many degrees-of-freedom,
the challenges and the growing importance and pervasiveness of
ensemble applications, we designed and implemented Ensemble
Toolkit [10]. Similar to the previous two use-cases, a proxy applica-
tion would provide a lightweight and highly tunable workload so as
to simplify and design Ensemble Toolkit for general purpose work-
loads. In addition, a proxy application would provide the ability
to vary the duration and number of task instances between dif-
ferent stages of the application and change the coupling between
tasks; this is an important characteristics of applications used for
advanced sampling [11].

3. Synapse scope and architecture

A finer-grained analysis of the aforementioned use cases, results
in the following requirements on the profiling and emulation stages
of Synapse.

Download	English	Version:

https://daneshyari.com/en/article/6874331

Download	Persian	Version:

https://daneshyari.com/article/6874331

Daneshyari.com

https://daneshyari.com/en/article/6874331
https://daneshyari.com/article/6874331
https://daneshyari.com/

