
Journal of Computational Science 27 (2018) 345–356

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Efficient data layouts for a three-dimensional electrostatic
Particle-in-Cell code

Yann Barsamiana,b,∗, Sever A. Hirstoagab,c, Éric Violarda,b

a Université de Strasbourg, CNRS, ICube UMR 7357, F-67412 Illkirch, France
b Inria Nancy - Grand Est, F-54600 Villers-lès-Nancy, France
c Université de Strasbourg, CNRS, IRMA UMR 7501, F-67084 Strasbourg, France

a r t i c l e i n f o

Article history:
Received 10 December 2017
Received in revised form 22 April 2018
Accepted 10 June 2018
Available online 26 July 2018

Keywords:
Data structures
Space-filling curves
SIMD architecture
Hybrid parallelism
Strong and weak scaling
Three-dimensional Particle-in-Cell
simulation
Plasma physics

a b s t r a c t

The Particle-in-Cell (PIC) method is a widely used tool in plasma physics. To accurately solve realistic
problems, the method requires to use trillions of particles and therefore, there is a strong demand for
high performance code on modern architectures. The present work describes performance results of
Pic-Vert, a hybrid OpenMP/MPI and vectorized three-dimensional electrostatic PIC code.

The code simulates 3d3v Vlasov–Poisson systems on Cartesian grids with periodic boundary conditions.
Overall, it processes 590 million particles/second on a 24-core Intel Skylake architecture, without hyper-
threading (25 million particles per second per core).

The paper presents extensions in 3d of our preliminary 2d results (Barsamian et al., 2017), with high-
lights on the difficulties and solutions proposed for these extensions. Specifically, our main contributions
consist in proposing a new space-filling curve in 3d (called L6D) to improve the cache reuse and an
adapted loop transformation (strip-mining) to achieve efficient vectorization. The analysis of these opti-
mization strategies is performed in two-stages, first on a 24-core socket and second on a super-computer,
from 1 to 3072 cores, demonstrating significant performance gains and very satisfactory weak scaling
results of the code.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Implementing a Particle-in-Cell (PIC) method is an important
step of many applications in the field of computational science.
Although particle methods are usually characterized by low accu-
racy, they are able, when using a very large number of particles,
to adequately reproduce complicated phenomena, for instance
in plasma physics [2,3]. However, in such a situation, a naive
implementation can quickly exhibit memory bottlenecks since the
overall cost is dominated by data motion and not by computation
[4].

Therefore, a lot of research efforts were recently devoted
towards more adapted PIC implementations that utilize efficiently
modern super-computing resources [4–9]. Despite these significant
advances, targeting realistic applications in plasma physics is still
challenging, due to the complex multi-scale six-dimensional prob-

∗ Corresponding author at: Pôle API, 300 bd Sébastien Brant, CS 10413, F-67412
Illkirch Cedex.

E-mail addresses: ybarsamian@unistra.fr (Y. Barsamian),
sever.hirstoaga@inria.fr (S.A. Hirstoaga), violard@unistra.fr (É. Violard).

lems to be solved in the phase space. In this direction, our objective
is to develop a massively parallel and highly scalable PIC code, in
view of physically meaningful realistic simulations.

First steps were achieved in [10,1] where we built a hybrid
parallel and vectorized PIC code for a Vlasov–Poisson model in a
two-dimensional (2d) physical space. Several data structures for
particles and for grid quantities were analyzed in order to enhance
data locality and to reduce the execution time with respect to a
classic code. More precisely, we showed in [1] that a structure of
arrays and a L4D space-filling curve lead to an efficient ordering of
the particles and of the electric field and the charge density, respec-
tively. In addition, the performance of parallelization of the loops
through distributed and shared memory paradigms was assessed
in tandem with the memory channels.

In the present contribution we extend to three-dimensions (3d)
for the physical space the PIC code in [1] for simulating electrostatic
plasma. Even though reduced 2d models are used in the literature
to gain insights about the main behavior of the plasma, full 3d sim-
ulations clearly improve the realism of the physical description.
Moreover, in some situations, reducing the dimensionality is not
even possible and thus a 3d simulation is unavoidable. However,
with the aim of keeping a satisfactory accuracy of the computed

https://doi.org/10.1016/j.jocs.2018.06.004
1877-7503/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jocs.2018.06.004
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2018.06.004&domain=pdf
mailto:ybarsamian@unistra.fr
mailto:sever.hirstoaga@inria.fr
mailto:violard@unistra.fr
https://doi.org/10.1016/j.jocs.2018.06.004

346 Y. Barsamian et al. / Journal of Computational Science 27 (2018) 345–356

solutions in this case, we need to consider the significant increase
in the amount of data to be processed.

A first obvious difficulty of the extension from 2d to 3d simu-
lations is the need for more storage for the grid quantities [2,3]. If,
in a 2d simulation, keeping the whole grid quantities in the cache
memory is still possible, this target is much more difficult or even
impossible to achieve for a fine grid in the 3d case. Secondly, a 3d
simulation requires more data traffic and computations. Specifi-
cally, passing from 4 grid points to 8 points for the interpolation
and accumulation steps (when using a linear approach) becomes
more difficult to handle, both for the data flow and for the vectoriza-
tion. In addition, the difficulty increases significantly if higher order
approximations within these steps are in use. The same challenges
need to be addressed when vectorization is used for the updating
positions step.

The paper is organized as follows: in Section 2 we present the
basic kinetic model for the plasma, we detail the steps of the PIC
implementation, introduce the related work and explain our con-
tributions. In Section 3 we detail the code optimizations and we
present the performance results on 24 cores with OpenMP only. In
Section 4 we show the scalability of the code on up to 3,072 cores
of the supercomputer Marconi. Section 5 summarizes the work and
presents some future directions.

2. PIC overview for the 3d Vlasov–Poisson model

2.1. Description of the problem

A PIC method simulates a plasma by integrating self-
consistently the trajectories of charged particles with fields that are
generated by the particles themselves [2,3]. In the case where there
is no other external field and the self-consistent magnetic field
is neglected, this relies on solving the following Vlasov–Poisson
system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tf + v · ∇xf + q

m
E · ∇vf = 0 Vlasov

f (x, v, 0) = f0

−�� = �

�0
Poisson

where

�(x, t) = q

∫
f (x, v, t)dv and E(x, t) = −∇�(x, t).

In the system above, f = f(x, v, t) stands for the distribution of one
species of particles (with charge q and mass m) in a six-dimensional
phase space (three dimensions for positions and three dimen-
sions for velocities), � stands for the charge density, and E for
the self-consistent electric field. A PIC method consists in dis-
cretizing (sampling) the distribution function by a collection of
macro-particles that move in the phase space following the charac-
teristics of the Vlasov equation. Then, a PIC simulation follows four
steps: accumulate on the spatial grid the particle charge, solve the
Poisson equation to obtain the grid electric field, interpolate this
field to the particles, and finally push in time the particle positions
and velocities.

In our PIC code, the particle positions and velocities are initial-
ized randomly using the WELL generator [11]. The particles all have
the same fixed weight. They are advanced in time with a leap-frog
time stepping [2,Section 2.4] (second-order in time). The electric
field is computed by solving the Poisson equation on a uniform
Cartesian grid, by a Fourier method. Then, for the particle and
force weighting we use the Cloud-in-Cell model [12] (first-order
in space), meaning that eight neighboring grid points are used in

the interpolation/accumulation steps for a particle in that cell. The
PIC pseudo-code is detailed in Fig. 1.

Next we describe the two basic types of data on which the
sequential implementation of the code is based.

2.2. Particle data structure

A particle is given by its position and velocity. While the
velocity is classically represented by three real numbers, the
position is identified in the present work with a single cell
index icell and three normalized offsets within this cell. The
advantages of this representation are exposed in [4,Section III-
E]. In addition to the parameters explained in Fig. 1, we denote
the physical space by [xmin;xmax) × [ymin;ymax) × [zmin;zmax), and
the grid spacing by �x = (xmax − xmin)/ncx, �y = (ymax − ymin)/ncy
and �z = (zmax − zmin)/ncz. Thus, a particle positioned at (xphysical,
yphysical, zphysical) is mapped on the grid at the position (x, y, z) ∈
[0;ncx) × [0;ncy) × [0;ncz), where

x = xphysical − xmin

�x
, y = yphysical − ymin

�y
and z = zphysical − zmin

�z
.

Then, we consider the integers

ix = floor(x), iy = floor(y) and iz = floor(z), (1)

and the normalized offsets (which are real numbers in [0;1))

dx = x − ix, dy = y − iy and dz = z − iz. (2)

The cell index icell is a number in {0, 1, . . ., ncx · ncy · ncz − 1},
taken as the image of some one-to-one mapping depending on (ix,
iy, iz). For example, the row-major mapping

(ix, iy, iz) �→ icell = (ix · ncy + iy) · ncz + iz

icell �→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ix =
⌊

icell

ncz · ncy

⌋

iy = mod
(⌊

icell

ncz

⌋
, ncy

)
iz = mod(icell, ncz)

(3)

is commonly used in C. However, several bijection mappings will
be analyzed in the following sections with the aim of improving the
cache reuse.

Finally, a particle is stored in memory with 1 int (icell), 3 floats
(dx, dy and dz) and 3 doubles (vx, vy and vz). In our code, these 7
attributes are stored in a Structure of Arrays (SoA), to enable effi-
cient vectorization. In this framework, the update particle position
step (line 10 in Fig. 1) can be accomplished in the following four
sub-steps:
Update positions
1 Compute (ix , iy , iz) from icell

2 Update (x, y, z) using formula (2) and line 10 in Fig. 1.
3 Compute the new values of (ix , dx, iy , dy, iz , dz) using

formulas (1) and (2).
4 Compute icell from (ix , iy , iz).

The reason behind this approach stems from the fact that on
modern architectures, it might be faster to make rapid compu-
tations than to store numbers. In this case, we clearly need fast
algorithms for computing the bijection functions in sub-steps 1
and 4 above. For example, the bijection mapping in (3) can be com-
puted very fast in both directions, which is not the case for all the
mappings analyzed in this paper. In Section 3.2 we show for some
bijection mappings that computing them is faster than storing the
integers (ix, iy, iz) in addition to icell.

Download English Version:

https://daneshyari.com/en/article/6874332

Download Persian Version:

https://daneshyari.com/article/6874332

Daneshyari.com

https://daneshyari.com/en/article/6874332
https://daneshyari.com/article/6874332
https://daneshyari.com

