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a  b  s  t  r  a  c  t

The  low-rank  representation  (LRR)  was presented  recently  and  demonstrated  its  effectiveness  for  robust
subspace  segmentation.  This  paper  presents  a  discriminative  projection  method  based  on  Low-rank  affin-
ity matrix  (LRA-DP)  for robust  feature  extraction.  The  affinity  matrix  is  designed  to  better  preserve  the
underlying  low-rank  structure  of  data  representation  revealed  by  LRR.  The  experiments  on  the Yale,
Extended  Yale  B, AR face  image  databases  and the  PolyU  palmprint  database  showed  LRA-DP  is  always
better  than  or  comparable  to other  state-of-the-art  methods,  which  means  underlying  low-rank  structure
of data  representation  preserved  by  LRA-DP  is helpful  for  classification  problem.

© 2018  Published  by  Elsevier  B.V.

1. Introduction

In recent years, biological recognition has attracted tremendous
interests [1–4]. To achieve better results, feature extraction is a very
important step in the task of biological recognition. There are a lot
of feature extraction methods which were proposed for subspace
learning in the last several years [5–12]. Principal component anal-
ysis (PCA) [5,6] is a classical algorithm to seek a low-dimensional
representation of the high-dimensional data. But it is unable to
handle the sparse errors of high magnitude. To solve this prob-
lem, Candès [7] and Wright et al. [8] proposed the Robust PCA
(RPCA) method. Ran He et al. presented a method for recovering the
corrupted low-rank matrices via half-quadratic based nonconvex
minimization [9]. Similarly, G. Liu et al. [10] present the low-rank
representation (LRR) method based low-rank hypothesis. The two
methods both consider that the data X is composed by the original
data and the noises. The difference between LRR and Robust PCA
is that LRR assumes the representation coefficients of data vectors
with respect to a dictionary is low-rank, while the RPCA assumes
the data matrix itself is low-rank. LRR has the ability for subspace
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segmentation, but RPCA does not. Recently, D. Luo et al. proposed
a method for multi-subspace representation and discovery [11].

LRR is an effective, robust subspace clustering technique and has
found wide applications in machine learning and computer vision,
e.g., motion segmentation, face clustering, and temporal segmen-
tation [10,13,14,16,32–34].

LRR, however, expects that the subspaces are independent. In
fact, the subspaces are not as independent as expected. Therefore,
working without class information, LRR might not obtain desirable
clustering result. In addition, LRR performs subspace clustering in
the original data vector space and works closely for the training
data. For a new test sample, in order to determine its class, we have
to retrain by solving the problem (4) after adding the new sample.
It is obvious that the retraining process is very time-consuming if
there are a large number of test samples.

LRR-based discriminative projection method (LRR-DP) [15] was
proposed to address the problem of LRR for robust feature extrac-
tion. The more block-tridiagonal the affinity matrix gained by LRR
is, the better discriminative information we will obtain. In this
paper, we try to enhance the performance of feature extraction by
optimizing the affinity matrix. The starting point is the Lagrangian
multiplier method which is used to solve the affinity matrix. The
only K max  singular values are selected, when we take the Inexact
ALM algorithm instead of ALM algorithm to calculate the affinity
matrix. We  perform experiments using the Yale, Extended Yale B,
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AR face image databases and the PolyU palmprint database, and
results demonstrate the effectiveness of the proposed method.

2. LRR affinity matrix

2.1. LRR

X = [x1, x2, . . .,  xn] is a set of data vectors in D-dimensional
space. The dataset is represented using a dictionary A =
[a1, a2, . . .,  am]:

X = AW (1)

where W is the representation coefficient matrix.
Since the dictionary A is usually overcomplete, LRR seeks an

optimal low- rank solution by solving the following problem [10]:

min
W rank (W) ,  s.t.X = AW.  (2)

But it is hard to solve the above optimization problem (2).
Fortunately, Candès et al. [7] indicated that the following convex
optimization problem can take the place of the problem (2):

min
W ‖W‖∗, s.t.X = AW,  (3)

where |·|* denotes the nuclear norm of a matrix [16], i.e. the sum of
the singular values of the matrix.

2.2. LRR for noisy data

Suppose the data set X owns c classes
{
Si
}c
i=1

. Let Xi be a set of
ni data points from this subspace, i.e. X = [X1, X2, . . .,  Xc].

For subspace clustering, we need to compute an affinity matrix
that characterizes the pairwise affinities (similarities) between data
vectors. Therefore, the data X itself is used as the dictionary [10],
i.e., problem (3) becomes

min
W ‖W‖∗, s.t.X = XW.  (4)

In [10], it is ensured that a good solution liked (5) to problem
(4) exists. The solution (5) is considered to be block-diagonal.

W∗ =

⎡
⎢⎢⎢⎢⎣

W∗
1 0 · · · 0

0 W∗
2 · · · 0

0 0
. . . 0

0 0 0 W∗
c

⎤
⎥⎥⎥⎥⎦
. (5)

Liu and Lin [10] give the Inexact ALM algorithm to calculate the
optimal solution W*  to problem (4).

2.3. LRR affinity matrix for corrupted data

It is considered that the corrupted data can be composed by
original part and noise part, i.e. X = XW + E. The affinity matrix W
can be obtained by solving the following optimal problem [10]:

min
W,E‖W‖∗ + �‖E‖2,1, s.t.X = XW + E, (6)

where ‖E‖2,1 =
n∑
j=1

√√√√
n∑
i=1

(
[E]ij

)2
[17], [E]l is the l-th column of E

and � > 0.
Refer to [18], a reasonable strategy is simply to relax the equal-

ity constraint in (4). The problem (6) is converted to the following
equivalent problem:

min
W,E‖J‖∗ + �‖E‖2,1, s.t.X = XW + E, W = J, (7)

Fig. 1. The example using LRR to correct the noise in face, Left: the original data (X);
Middle: the corrected data (XW); Right: the error (E).

which can be obtained by solving the following Augmented
Lagrange Multiplier (ALM) problem [19]:

min
W,E,J,Y1,Y2

‖J‖∗ + �‖E‖2,1 + tr
[
Yt1 (X − XW − E)

]
+ tr

[
Yt2 (W − J)

]

+�
2

(‖X − XW − E‖2
F + W − J‖2

F ), (8)

where Y1 and Y2 are Lagrange multipliers and >0 is a penalty param-
eter.

3. Low-rank affinity matrix based Discriminative
Projection (LRA-DP)

The LRR-DP [15] try to find a linear projection by virtue of the
low-rank representation coefficient matrix. In this paper, we aim
to improve the method by optimizing the affinity matrix W*  of LRR.
Because it is considered that the more block-diagonal the affinity
matrix is, the better discriminative projection we will obtain. We
will just select the only K max  singular values for each iteration,
when we take the Inexact ALM algorithm instead of ALM algorithm
to calculate the affinity matrix of LRR.

The corrupted data can be separated to two parts, i.e. X = XW + E.
For four kinds of noise, LRR perform well for denoising on the Yale
dataset, as shown in Fig. 1.

In the process of calculating the affinity matrix W,  we need solve
the singular value decomposition problem:

(U, S, V) = svd
(
X − Ek − �−1

k
Yk

)
, (9)

where k is the number of iteration.
Here, we  just select the only K max  singular values S′ to take

place of S. The iterative update of the affinity matrix is obtained by
formula (10):

Jk+1 = US
�−1
k

�S′�SVT , (10)

where S
�−1
k

S′ =

⎧⎨
⎩

S′ − �−1
k
, if S

′
> �−1

k
S′ + �−1

k
, if S′ < −�−1

k
0, otherwise

We obtain the affinity matrix W by the improve method above
mentioned. Let xij be the j-th sample of class i, wij be the affinity
vector corresponding to the representation weights of xij, and ws

ij
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