
Journal of Computational Science 26 (2018) 22–27

Contents lists available at ScienceDirect

Journal  of  Computational Science

journa l homepage: www.e lsev ier .com/ locate / jocs

Regularized  computation  of  oscillatory  integrals  with  stationary
points

K.P.  Lovetskiy a,∗, L.A.  Sevastianov a, D.S.  Kulyabov a,  N.E.  Nikolaev b

a Department of Applied Probability and Informatics, Peoples’ Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya str., Moscow
117198, Russia
b Department of Applied Physics, Peoples’ Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya str., Moscow 117198, Russia

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 27 May  2016
Received in revised form 17 February 2018
Accepted 4 March 2018
Available online 6 March 2018

MSC:
65D32
65D30

Keywords:
Regularization
Integration of rapidly oscillating functions
Levin collocation method
Chebyshev differentiation matrix
Ill conditioned matrices
Stable methods for solving systems of
linear algebraic equations

a  b  s  t  r  a  c  t

Ability  to  calculate  integrals  of rapidly  oscillating  functions  is crucial  for  solving  many  problems  in optics,
electrodynamics,  quantum  mechanics,  nuclear  physics,  and  many  other  areas.  The  article  considers  the
method  of computing  oscillatory  integrals  using  the  transition  to the  numerical  solution  of  the  system  of
ordinary  differential  equations.  Using  the Levin’s  collocation  method,  we reduce  the  problem  to  solving
a system  of linear  algebraic  equations.

In the  case  where  the  phase  function  has  stationary  points  (its  derivative  vanishes  on  the  interval  of
integration),  the  solution  of  the  corresponding  system  becomes  an  ill-posed  task.  The  regularized  algo-
rithm  presented  in the article  describes  the stable  method  of  integration  of  rapidly  oscillating  functions
at  the  presence  of stationary  points.  Performance  and  high  accuracy  of the  algorithms  are  illustrated  by
various  examples.

© 2018  Published  by  Elsevier  B.V.

1. Introduction

Let us consider the method for the evaluation of the oscillatory
integral

I =
∫ b

a

f (x)eiωg(x) dx ≡
∫ b

a

F(x) dx, (1)

assuming that the constant of oscillations ω » 1 is a “large” value;
and in the domain if integration the amplitude f(x) and phase g(x)
are sufficiently smooth functions.

This type of integrals is of great interest and is of fundamen-
tal importance for the solution of many applied problems. Rapidly
oscillating phenomena occur in electromagnetics, quantum theory,
fluid dynamics, acoustics, electrodynamics, molecular modeling,
computerized tomography and imaging, plasma transport, celestial
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mechanics and many other areas [1]. A great number of studies are
devoted to the numerical integration of highly oscillating functions
that appears very frequently in a wide range of practical applica-
tions, such as engineering applications, Fourier transform, signal
processing, image recognition, fluid dynamics and electrodynam-
ics.

This type of oscillatory integrals may  be useful in investigation
of the interaction of atoms and molecules with external electric
(laser) fields [2–4]. The processes in which a fast ion captures one
or several electrons colliding with an atomic target is studied in [5].

The multiple ionization of atoms and molecules by photon
or charged-particle impact is of considerable interest in many
branches of physics, such as plasma physics, astrophysics and
radio-physics. Such processes are also important to understand
the electronic structure, the ionization mechanisms and to probe
electron-electron correlation in the case of double ionization which
is the main cause of this process [6,7]. All of these studies deal with
the problem of numerical integration of highly oscillating functions.

Such a wide use of integrals from rapidly oscillating functions
makes development of adequate methods and algorithms of their
numerical calculation quite urgent. Examples of such researches
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include the solution of highly oscillatory differential equations via
the modified Magnus expansion [8,9], boundary integral formu-
lations of the Helmholtz equation [10], the evaluation of special
functions and orthogonal expansions (Fourier series, modified
Fourier series) [11], ODEs/PDEs with oscillating and quasi-periodic
coefficients [12–14], and some other types of oscillatory functions
[15,16].

The traditional methods of quadrature mentioned above are
well studied and work well in cases where the phase function has
no stationary points. However, in the case where the phase func-
tion has stationary points (its derivative vanishes at the interval of
integration) and calculating the corresponding integral becomes an
ill-posed problem.

For solving this problem, various methods are proposed [17–20],
but their practical use is not an easy work. We  would like to present
more general and much simpler approach.

The integrals of this type can be effectively calculated using the
following methods: the Levin-type method [21,22,17], the method
of steepest descent [18]. For integrands with linear phase Filon
method [23,24] is often used, which works reliably. It is based
on building composite quadrature formulas in which at each par-
tial interval an interpolation polynomial of low degree is used to
approximate the amplitude f(x).

The Levin collocation method is suitable for finding the oscil-
latory integrals with complex amplitude and phase functions. It
consists in moving on to finding the antiderivative p(x) of the inte-
grand satisfying the condition

d
dx

[p(x)eiωg(x)] = f (x)eiωg(x). (2)

Knowing the a particular solution p(x) on the interval of integra-
tion (or more precisely, at the end points of this interval), one can
calculate the value of the integral of the oscillating function with
the formula

I[f ] =
∫ b

a

feiωg dx =
∫ b

a

d
dx

[peiωg] dx = p(b)eiωg(b) − p(a)eiωg(a).(3)

In the collocation method the problem of calculating the inte-
gral is replaced by the “equivalent” problem of finding the values
of the function antiderivative at two points at the ends of the inte-
gration interval [a, b], allowing to calculate the value of the integral
I[f] with the formula (3). Note that the method does not use the
boundary conditions for the solution of the problem (2), because
any particular solution allows to calculate the value of the definite
integral [22].

Let us consider the problem of finding the antiderivative of the
integrand, or, more precisely, of the function p(x) satisfying the
condition (2) at certain points on the interval [a, b]. Let us dwell
on spectral methods of finding the unknown function in the prob-
lem of integrating the rapidly oscillating functions. These spectral
methods use a representation of the function as an expansion in
series

p(x) =
∞∑
k=0

ckϕk(x) (4)

over the basis {ϕk(x)}∞1 in the Hilbert space. To achieve an accept-
able accuracy of the approximation it is often necessary to use a
sufficiently large number (n + 1) of terms in the series. Consider the
“operator” L[p] = p′ + iωg′p and the equation L[p](x) = f(x). Its solu-
tion has to be such that with certain coefficients ck, k = 1, . . .,  n the
following equalities should be fulfilled

L

[
n∑
k=0

ckϕk(xj)

]
= f (xj), j = 0, . . .,  n (5)

at collocation points {x0, . . .,  xn}, i.e. coefficients ck can be defined as
the solution of the system of equations of the collocation method:⎧⎨
⎩
L[p](x0) = f (x0),

. . .

L[p](xn) = f (xn).

(6)

While determining the approximate value of the integral I[f] in
the form

QL[f ] =
∫ b

a

L(p)eiωg dx =
∫ b

a

d
dx

[peiωg ] dx = p(b)eiωg(b) − p(a)eiωg(a) (7)

the following estimate of the approximation error is valid [24]:

I[f] − QL[f] = O(ω−1) — in the case where the boundary points are
not included in the number of grid nodes;
I[f] − QL[f] = O(ω−2) — in the case where the boundary points are
included in the number of grid nodes.

These estimates imply very simple practical conclusion that
inclusion of the boundary points in the number of grid nodes allows
to increase by an order the accuracy of the solution.

Thus, the problem of the approximate calculation of the integral
(1) from rapidly oscillating function can be reduced to solving the
system of equations (6). By an appropriate choice of the approxi-
mation points, i.e. their location within the range of integration and
their number, it is possible to improve the accuracy of the solution.

2. Approximation of a (sought antiderivative) function by
the Chebyshev polynomials. Differentiation matrix in the
frequency and physical spaces

Among many basis systems of polynomials used to approximate
functions on finite intervals the Chebyshev polynomials of the first
kind have proven well for practical calculations. We  assume that
the interval of integration is [a, b] = [−1, 1]. And we consider the
Chebyshev polynomials of the first kind Tk(x), k = 0, . . .,  n as basis
functions. Suppose that we know the values of some polynomial
p(x) of the nth degree at (n + 1) points x = (x0, . . .,  xn). Then these val-
ues define the polynomial uniquely and hence uniquely determine
the values p′(x) = dp(x)/dx of its derivatives at these points. Further-
more, the value of the derivative at every point can be represented
as a linear combination of values of the polynomial at these points.
This dependence can be written in matrix form [25] as

p′(x) = Dp(x). (8)

The matrix D = {dk,j} is called the differentiation matrix in the
physical space.

If the basis functions are the Chebyshev polynomials of the first
kind, and grid points are the Gauss–Lobatto nodes

xj = cos
j�

N
, j = 0, . . .,  N, (9)

then the elements of antisymmetric Chebyshev differentiation
matrix are calculated as follows [25]:

dkj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ck
cj

(−1)k+j

(xk − xj)
, k, j = 0, . . .,  N, k /= j,

−
N∑

n = 0

n /= k

dkn, k = j. (10)

Note. It is easy to check that the sum of the columns of the
Chebyshev matrix is the zero vector, therefore, the differentiation
matrix D = {dk,j} is degenerate [25].
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