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a  b  s  t  r  a  c  t

The  main  objective  of  this  paper  is  to reduce  data  dimensionality  in high-dimensional  feature  datasets.  It
uses  an  effective  distance  based  Non-integer  Matrix  Factorization  (NMF)  method  to  resolve  the  problem
of  data dimensionality.  The  non-orthogonality  arising  due  to increasing  dimensionality  is  resolved  using
NMF  and  an  effective  distance  measurement.  This  process  involves  organizing  the  datasets  to  form  a
defined  geometric  structure  since  conventional  dimensionality  reduction  principles  capture  the  struc-
tured  data  using  a similarity  matrix  with  a distance-based  measurement.  However,  such  distance-based
measurements  cannot  fit  dynamic  data  structure  to the  model  and  most  of the intrinsic  structure  of  the
data  is  ignored.  Hence,  to avoid  this  complexity,  the  proposed  method  uses  Probabilistic  Distance  Locality
Preserving  Projections  (PDLPP)  to  structure  the  dynamic  data.  The  proposed  method  is  evaluated  against
the  conventional  methods  in terms  of its  accuracy  and  normalized  mutual  information  over  different  test
cases. The  proposed  method  increases  the  performance  of  learning  the  patterns  in high dimensional  data
with less  computation  time.  The  results  demonstrated  that  the  proposed  method  fits  well  with  static  and
dynamic data  to query  the objects  in the  search  space.

© 2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Data reduction reduces the data dimensionality, and retains the
data representation. The data reduction is selected to reduce the
instances of a given dataset. In spite of many efforts to deal with
such instances, data mining algorithms experience severe chal-
lenges due to the non-applicability of datasets to large instances.
Hence, the computational complexity of the system increases with
larger instances and leads to problems in scaling increased storage
requirements and clustering accuracy. The other problems associ-
ated with larger data instances include: improper association or
interaction in the feature space; lack of ability to handle the large
datasets with discrete variables; inability to classify the data and
poor knowledge generation for a given query; and, finally, poor
computation due to missing variables or low dimensional features
in high dimensional datasets.

The major aim of this paper is to propose a novel probabilis-
tic distance based LPP method to reduce the dimensionality of the
given datasets. This method uses Non-integer Matrix Factoriza-
tion (NMF) to remove the low dimensional features in the given
datasets. This probabilistic distance estimation computes the dis-
tances based on the probability of occurrence between the two
different data samples placed on a graph node.

The major contribution of our proposed method involves:
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1. Estimation of similarity between the data samples using proba-
bilistic distance based representation.

2. We introduce NMI  to remove the lower dimensional features so
as to reduce the data dimensionality.

3. We have introduced discriminative based LPP to structure the
data dimensions using weighted estimation of probabilistic dis-
tance estimation.

4. This method has been tested over three different document
datasets to validate the accuracy and normalized mutual infor-
mation (NMF) of DBLPP.

Organization: The paper is further presented as follows: Sec-
tion 2 examines the related works with high dimensional data and
LPP; Section 3 explores Locality Preserving Projection and Section 4
Distance based Similarity Measurement; Section 5 provides mod-
ifications to the proposed work using the DLPP method; Section 6
evaluates the proposed work with related datasets; Finally, Section
7 concludes the paper with an indication of future work.

2. Related works

2.1. High dimensional data

This section discusses list of existing methods used to reduce
the high dimensional dataset. Data dimensionality is reduced by
Simão et al. [1], who  proposed principal component analysis (PCA)
with bi-cubic interpolation, which allows re-sampling of raw data
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[1]. Tunga [2] used multi-variance product representation and a
k-means clustering algorithm to overcome the difficulties of high
dimensional data due to high multi-variance [2]. Zhu and Xue [3]
proposed an orthogonal distance based method to improve the
relationship between the data and to avoid inference of data with
high dimensionality [3]. Liu et al. [4] tested the covariance matrix
and mean vector in high dimensional datasets using asymptotic
null distribution to improve the unbiased asymptotic datasets [4].
Lucas et al. [5] proposed Discriminative Pattern (DP) mining to
improve the data characteristics in high dimensional datasets [5].
Zhao et al. [6] proposed improving the accuracy of predicting the
high dimensional dataset by using an improved Ando and Li [46]
method [6]. Zamora et al. [7] proposed locality-sensitive hash-
ing (LSH) using MinHash with Jaccard similarity approximations,
and SimHash with cosine similarity approximation. This method
focuses on clustering the high dimensional datasets with incom-
plete information [7]. Ultsch, and Lötsch [8] proposed emergent
self-organizing feature maps to distribute the high dimensional
datasets to form a cluster structure [8]. Sang et al. [9] improve the
geometric topology of high dimensional data using discretization
and a supervised area based chi-square discretization algorithm [9].
Apiletti et al. [10] proposed a Map  Reduce-based frequent closed
item set mining algorithm (PaMPa-HD) to improve the mining of
high dimensional datasets with hidden and non-trivial patterns
[10]. Zhou et al. [11] proposed Online Feature Selection based on
the Dependency in K nearest neighbors using Rough Set theory to
select the high dimensional data features [11]. Lansangan et al.
[12] proposed a constrained optimization method with variable
selection and dimension reduction in high dimensional data [12].
Jing et al. [13] proposed stratified sampling that samples the fea-
tures of high dimensional data in a random way [13]. Liu and Li
[14] proposed integrated constraint based clustering to address the
problems related to the selection, weighting of data dimensions
and assignment of data [14]. Cardoso et al. [15] proposed Itera-
tive random projections to increase the data dimensionality and
reduce the time complexity over each k-means convergence [15].
Moayedikia et al. [16] proposed a SYMON feature selection method
with harmony search and symmetrical uncertainty to avoid mis-
classification in high dimensional datasets [16]. Pedergnana and
García [17] avoid the challenges associated with data intensive
algorithms to handle the regression data optimally using a compre-
hensive systematic approach over high dimensional data [17]. Itoh
et al. [18] proposed graph visualization over well-correlated dimen-
sions to construct the user selected subsets [18]. Chang and Yang
[47] proposed a novel semi supervised feature selection framework
by mining correlations among multiple tasks. This method lever-
ages the knowledge of multiple related tasks and improves the
performance of feature selection. Zhihui Li et al. [48] proposed a
Linear discriminant analysis (LDA) supervised linear dimensional
reduction model that learns low-dimensional representation from
high-dimensional feature space using a transformation matrix and
preserves the discriminative information through a between-class
scatter matrix and reduces the within class scatter matrix. This
method reduces the high dimensional datasets more effectively.

2.2. Reviews related to locality preserving projections (LPP)

This section discusses the conventional LPP methods used to
improve the feature extraction and dimensionality reduction. Lu
et al. [19] and Huang and Zhuang [22] proposed a feature extrac-
tion using matrix exponential discriminant LPP. This method avoids
a small sample size, which is lower than sample dimensions using
symmetric matrix exponentials. Wang et al. ([37] proposed expo-
nential LPP, Shikkenawis and Mitra [20] proposed Extended LPP
with a supervised variant to discover the low dimensional manifold
to reduce data dimensionality [20]. Xu et al. [21] proposed coupled

LPP to attain higher classification rates to preserve the low dimen-
sional manifold [21]. Jiang et al. [23] proposed anchor graph based
LPP, Zhang et al. [24] proposed sparse discriminative representa-
tion based LPP, Zheng et al. [25] regression with sparse penalty LPP
with compressive sensing theory, Chen et al. [26] and Xu et al. [39]
proposed 2D discriminant LPP using L1matrix norm maximization,
Dornaika and Assoum [27] parameter less LPP with affinity matrix,
supervised LPP, Orthogonal LPP [27], Zhang et al. [28] proposed
sparsity LPP and �-regularization sparsity LPP, Wang et al.[29] pro-
posed novel level set with shape priors using LPP, Guo et al. [30]
proposed a least square support vector machine with kernel LPP,
Chen et al. [31] proposed optimal LPP using singular Eigen compu-
tation, Lu et al. [32] proposed discriminant LPP using a maximum
margin criterion, He et al. [33] proposed statistics LPP with statistics
pattern analysis using non-Gaussian properties, Wong et al. [34]
proposed supervised optimal LPP (SOLPP) and normalized Lapla-
cian SOLPP, Zhang, et al. [35] proposed graph optimized LPP using a
novel DR algorithm, Chao et al. [36] LPP using local binary and class
regularization patterns, Lu and Tan [38] proposed improved dis-
criminant LPP, Rangarajan [42] proposed diagonal and secondary
diagonal LPP, Weng and Shen [40] proposed multivariate time
series LPP and, finally, Yu [41] proposed degradation assessment
LPP for improving the dimensionality features in a given dataset,
which can either be textual or image-based.

These are the conventional works intended to reduce the data
dimensionality in large databases. It is seen that these works
effectively reduces the data dimensionality by eliminating the
unwanted instances from large database. Hence, the proposed
method involves a design of new variant in LPP, which removal
the unwanted instances from large databases.

3. The locality preserving projection

The LPP is an unsupervised technique to reduce the dimension-
ality of the data in large mining datasets. The manifold structures
of large dimensional data sets are handled better than in principle
component analysis. The adjacent graph is constructed using a k
nearest neighbor algorithm to preserve the local structure of the
datasets.

Consider a sample data xi and xj are located at the nearest dis-
tance using k-nearest neighbor, then an edge is added between the
sample data and hence the weights between xi and xj are computed
using,

Sij = e−
‖xi−xj‖2

t (1)

The similarity matrix is obtained based on S =
{
Sij

}N
i,j=1

, which

is used to relate the similarity between the samples (N). When the
two samples, namely, xi and xj, lie as neighbors in the original sub-
space, then the new samples yi and yj lie close in the new subspace.
Hence, the projection vector (a) can be calculated as,
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where, yi = xi aT with a sample matrix (X), where i = 1,2,. . ..,  N.
Further, the diagonal matrix (D) is multiplied by Eq. (2) to obtain

the following relation using a Laplacian matrix, which is given by,
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