
Please cite this article in press as: A. Abdelfattah, et al., Batched one-sided factorizations of tiny matrices using GPUs: Challenges and
countermeasures, J. Comput. Sci. (2018), https://doi.org/10.1016/j.jocs.2018.01.005

ARTICLE IN PRESSG Model
JOCS-823; No. of Pages 11

Journal of Computational Science xxx (2018) xxx–xxx

Contents lists available at ScienceDirect

Journal of Computational Science

journa l homepage: www.e lsev ier .com/ locate / jocs

Batched one-sided factorizations of tiny matrices using GPUs:
Challenges and countermeasures�

Ahmad Abdelfattah a,∗, Azzam Haidar a, Stanimire Tomov a, Jack Dongarra a,b,c

a Innovative Computing Laboratory, University of Tennessee, Knoxville, USA
b Oak Ridge National Laboratory, Oak Ridge, USA
c University of Manchester, UK

a r t i c l e i n f o

Article history:
Received 14 October 2017
Received in revised form
30 November 2017
Accepted 28 January 2018
Available online xxx

Keywords:
GPU computing
Matrix factorization
Batch computation

a b s t r a c t

The use of batched matrix computations recently gained a lot of interest for applications, where the
same operation is applied to many small independent matrices. The batched computational pattern
is frequently encountered in applications of data analytics, direct/iterative solvers and precondition-
ers, computer vision, astrophysics, and more, and often requires specific designs for vectorization and
extreme parallelism to map well on today’s high-end many-core architectures. This has led to the devel-
opment of optimized software for batch computations, and to an ongoing community effort to develop
standard interfaces for batched linear algebra software. Furthering these developments, we present GPU
design and optimization techniques for high-performance batched one-sided factorizations of millions
of tiny matrices (of size 32 and less). We quantify the effects and relevance of different techniques in
order to select the best-performing LU, QR, and Cholesky factorization designs. While we adapt common
optimization techniques, such as optimal memory traffic, register blocking, and concurrency control, we
also show that a different mindset and techniques are needed when matrices are tiny, and in particular,
sub-vector/warp in size. The proposed routines are part of the MAGMA library and deliver significant
speedups compared to their counterparts in currently available vendor-optimized libraries. Notably, we
tune the developments for the newest V100 GPU from NVIDIA to show speedups of up to 11.8×.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Batch computations apply the same numerical algorithm to a
fairly large number of relatively small problems. The batched com-
puting workload is quite different than the common workload for
just one, typically large, matrix. The latter is served well by many
software packages, including LAPACK [2], ScaLAPACK [3], PLASMA
[4], and MAGMA [5]. The former, however, is relatively recent,
and gained a lot of attention in many scientific communities, e.g.,
quantum chemistry [6], sparse direct solvers [7], astrophysics [8],
and signal processing [9]. Software libraries such as Intel’s MKL
[10], NVIDIA’s cuBLAS [11], and MAGMA recently started to pro-
vide highly optimized batched routines for many of the BLAS and
LAPACK operations.

� This is an extended version of our conference paper [1] that was invited to the
JoCS special issue (https://doi.org/10.1016/j.procs.2017.05.250).

∗ Corresponding author.
E-mail addresses: ahmad@icl.utk.edu (A. Abdelfattah), haidar@icl.utk.edu

(A. Haidar), tomov@icl.utk.edu (S. Tomov), dongarra@icl.utk.edu (J. Dongarra).

Existing numerical linear algebra software packages rarely
achieve good performance on matrices of small sizes, because most
of the optimization techniques that they carry out pay off only
on large matrices. For example, the hybrid lookahead technique in
MAGMA [12] is used to overlap the panel factorization (on the CPU)
with the trailing matrix update (on the GPU). This design strategy
is not efficient for small sizes, since the updates are no longer com-
pute intensive, and therefore fail to overlap the panel factorization
and the CPU-GPU communication. This is why new developments
with different design strategies are needed.

While there have been new developments for GPU accelerated
batched computations, for example the work done by Haidar et al.
[13] and Abdelfattah et al. [14], there is still room for significant
improvements when the matrix sizes are tiny. For these extremely
small problems, the LAPACK-style blocking cannot achieve high
performance, even if it is carried out on the GPU solely. Since the
computation becomes memory bound on such small sizes, the cost
of writing the factorized panel and then reading it back to perform
the update becomes significant. Furthermore, the parallelization
(to achieve sufficiently high occupancy) and the vectorization (for
efficient warp use) become more challenging when sizes are less

https://doi.org/10.1016/j.jocs.2018.01.005
1877-7503/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jocs.2018.01.005
https://doi.org/10.1016/j.jocs.2018.01.005
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
https://doi.org/10.1016/j.procs.2017.05.250
https://doi.org/10.1016/j.procs.2017.05.250
https://doi.org/10.1016/j.procs.2017.05.250
https://doi.org/10.1016/j.procs.2017.05.250
https://doi.org/10.1016/j.procs.2017.05.250
https://doi.org/10.1016/j.procs.2017.05.250
https://doi.org/10.1016/j.procs.2017.05.250
https://doi.org/10.1016/j.procs.2017.05.250
https://doi.org/10.1016/j.procs.2017.05.250
https://doi.org/10.1016/j.procs.2017.05.250
mailto:ahmad@icl.utk.edu
mailto:haidar@icl.utk.edu
mailto:tomov@icl.utk.edu
mailto:dongarra@icl.utk.edu
https://doi.org/10.1016/j.jocs.2018.01.005

Please cite this article in press as: A. Abdelfattah, et al., Batched one-sided factorizations of tiny matrices using GPUs: Challenges and
countermeasures, J. Comput. Sci. (2018), https://doi.org/10.1016/j.jocs.2018.01.005

ARTICLE IN PRESSG Model
JOCS-823; No. of Pages 11

2 A. Abdelfattah et al. / Journal of Computational Science xxx (2018) xxx–xxx

than 32, and must, for example, be done across matrices. Therefore,
other design, parallelization, and vectorization strategies must be
discovered in order to resolve the aforementioned issues regarding
memory traffic and parallelization.

This paper presents highly optimized GPU kernels for batched
one-sided factorizations. The paper extends the previous work by
the authors for batched LU factorization and matrix inversion [1],
and applies the same design principles to the QR, and Cholesky fac-
torizations. In terms of the workload size, we consider one million
matrices of tiny sizes, typically from 1 up to 32. In addition to the
applications already mentioned, these factorizations are of partic-
ular importance to sparse direct solvers, such as the multifrontal
solvers that can be found in SuiteSparse [15]. We adopt a step-by-
step methodology, where incremental improvements in the kernel
design lead to incremental performance gains. Such a methodol-
ogy automatically justifies all of our design choices. While all the
kernels share the same optimization techniques, our design for the
LU factorization adopts a unique lazy swap strategy, which elimi-
nates the expensive intermediate row interchanges, thus leading to
a much faster kernel, but that is still numerically equivalent to an
LAPACK-style LU-factorization. The performance results show sig-
nificant speedups against the vendor-supplied cuBLAS kernels on
a Pascal P100 GPU, as well as on the new Volta V100 GPU.

2. Related Work

The design of high performance dense linear algebra (DLA) soft-
ware for GPUs was originally motivated by the high performance
GPUs can achieve in embarrassingly parallel, compute intensive
tasks, most notably on the matrix-matrix multiplication (GEMM)
[16–18]. The high performance GEMM enabled the development of
high performance DLA in libraries like MAGMA [5], where many of
the LAPACK numerical algorithms are designed in a hybrid style to
take advantage of both CPUs and GPUs [12].

The growing demand for high performance dense linear algebra
on large batches of small matrices has led to early developments for
batch matrix multiplication [19,20], which were then followed by
more optimized kernels being available in cuBLAS, starting with
version 8.0. The development of the batched GEMM in MAGMA
enabled the development of batched one-sided factorizations rou-
tines based on the LAPACK-style blocking [13], but on a smaller
scale. For example, while non-batched routines use a large blocking
size (e.g., 512 to 1024) to get asymptotically optimal performance,
batched routines block by much smaller sizes (e.g., 8 to 32), and rely
on batched GEMM that is specifically tuned for small sizes in order
to extract performance [21][22]. The developments for extremely
small matrices, however, are more challenging. An approach that
relies on separate panel/update stages [13] leads to redundant
memory traffic. This cost can be affordable for medium sizes (e.g.,
64 up to 256), but becomes significant for smaller sizes.

This is why other research efforts followed a one-kernel
approach, where all computations are fused into a single GPU ker-
nel. For example, Wang et al. [23] introduced FPGA-based parallel
LU factorization of large sparse matrices, where the algorithm is
reduced to factorizing many small matrices concurrently. Villa et al.
[24] developed a GPU-based batched LU factorization, which has
been used in subsurface transport simulation, where many chem-
ical and microbiological reactions in a flow path are simulated in
parallel [25]. Kurzak et al. [26] developed batched Cholesky factor-
ization in single precision for sizes up to 100 × 100, which was used
in an Alternating Least Squares (ALS) solver. Masliah et al. devel-
oped batched GEMM for very small sizes for both CPUs and GPUs
[27]. Batched matrix inversion has been also introduced in the con-
text of generating block-Jacobi preconditioners [28]. Batched QR
factorization is of particular importance to H-matrix computation,

as highlighted by Akbudak et al. [29], and by Boukaram et al. [30].
Kim et al. also introduced batched GEMM, triangular solve, and LU
(no pivoting) for CPUs and Intel’s Xeon Phi architectures based on
a compact interleaved data layout [31].

This paper follows the same one-kernel approach to improve
the MAGMA performance on very small sizes. It complements the
work by Haidar et al. [13], which outperforms cuBLAS for medium
and large sizes, but trails it for the sizes we focus on (up to 32).

3. Contributions

Below is a list of contributions for this paper.

1. Highly optimized GPU kernels for one-sided factorization on
batch workloads. The developed kernels significantly outper-
form the state of the art designs from the vendor provided
software. We typically consider single-node workloads that
involve millions of extremely small matrices.

2. A set of unified design techniques that are oblivious to the three
algorithms considered (LU, QR, and Cholesky factorizations). The
paper manages to find a common ground among the three algo-
rithms to achieve high performance.

3. The paper presents a detailed study of the different choices for
every aspect of the kernel design, including thread configuration,
matrix storage, occupancy, and others. The paper justifies the
final design choice by showing intermediate performance results
for different choices. Such a detailed study can be considered as
a guide for designing other algorithms on similar workloads.

4. Background

This section introduces the computational steps for the LU, QR,
and Cholesky factorizations on square matrices of size N×N. The
description follows the LAPACK notations in double precision arith-
metic.

The LU factorization computes the L and U factors of a general
matrix A, such that A = P×L×U, where P is a permutation matrix
that reflects the row interchanges required for pivoting. The matrix
L is unit lower triangular, while U is upper triangular. The permu-
tation matrix P is stored in a compact format using a pivot vector
(IPIV), such that for i ∈ {1, 2, · · ·, N}, row i has been swapped with
row IPIV(i).

There are four main steps in performing the unblocked LU factor-
ization. Namely, these are: (1) locate the maximum absolute value
in the current column (IDAMAX); (2) swap current row with the row
with maximum absolute value in the current column (DLASWP); (3)
scale the current column (DSCAL); and (4) rank − 1 update (DGER).
Algorithm 1 shows the factorization using the four steps. Accord-
ing to LAPACK working notes [32], the LU factorization of a square
matrix performs (2N3

3 − N2

2 + 5N
6) floating point operations (FLOPs).

Algorithm 1. Unblocked LU factorization.

While the LU factorization is able to factorize symmetric posi-
tive definite (SPD) matrices, the Cholesky factorization, shown in
Algorithm 2, introduces a much faster algorithm for such matri-
ces. The algorithm factorizes an SPD matrix A = LLT, where L is a

https://doi.org/10.1016/j.jocs.2018.01.005

Download English Version:

https://daneshyari.com/en/article/6874349

Download Persian Version:

https://daneshyari.com/article/6874349

Daneshyari.com

https://daneshyari.com/en/article/6874349
https://daneshyari.com/article/6874349
https://daneshyari.com

