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a  b  s  t  r  a  c  t

Hyperspectral  imaging  is  a widely  used  remote  sensing  technique  in  planetary  sciences.  Captured  data
consist  of  arrays  of  images  of the  same  scene  taken  at a high  number  of  sensor  wavelengths.  Study-
ing  these  data,  scientists  search  to understand,  for example,  the  mineral  composition  of  the  surface,  or
types and  kinds  of vegetation  present  in  the  region.  Different  mineral  or vegetation  classes  induce  spec-
tral features  that  allow  for their  identification  and mapping.  The  two  main  tasks  are  selecting  a subset
of  bands  that  best  capture  the relevant  spectral  features  and  separating  different  mixtures  from  sum-
mary  products  in  these  bands.  It  is common  practice  that  the subsets  of  bands  used  in the analysis  are
predefined  based  on experience,  i.e.,  without  taking  into  account  actual  data.  Then,  classification  of  the
regions  is performed  by analyzing  the  summary  products.  We, instead,  propose  an  approach  that  allows
for  data-driven  selection  of  subsets  of bands  and  for  a  more  accurate  separation  of different  mixtures.
Our  approach  relies  on an  interactive  visual  analysis  using  suitable  visual  encodings  and  interaction
mechanisms.  In  a first step,  we  produce  a similarity  plot  of the  bands  of the  hyperspectral  imaging  data
by  employing  a  projection-based  dimensionality  reduction  technique.  The  similarity  plot  allows  for  the
selection  of most  informative  bands.  In  a second  step,  we  apply  an  automatic  hierarchical  density-based
clustering  approach  to  the  pixels  of  the  selected  bands.  The  resulting  cluster  hierarchy  is interactively
explored  and  adjusted  using  coordinated  views  of  a  cluster  tree  visualization,  a  parallel  coordinate  plot
of the  bands,  and  a  spatial  data  visualization.  Brushing  and  linking  in the coordinated  views allows  for
an  intuitive  interactive  analysis  of  the  bands  leading  to the  desired  mineral  mapping  result.  The  effec-
tiveness  of  our  approach  is  demonstrated  by applying  it to mineral  mapping  of  Compact  Reconnaissance
Imaging  Spectrometer  for  Mars  data  and  vegetation  classification  of  Airborne  Visible/Infrared  Imaging
Spectrometer  data.

© 2018  Elsevier  B.V.  All  rights  reserved.

1. Hyperspectrology

Hyperspectral imaging is a remote sensing technique with var-
ious applications in planetary sciences. Captured data consist of
arrays of images of the same scene taken at a high number of sensor
wavelengths. Studying these data, scientists search to understand,
for example, the mineral composition of the surface, or types and
kinds of vegetation present in the region.

As the technology progresses, spectral and spatial resolution
of the instruments continue to increase. Nowadays, hyperspectral
data collection generates hundreds of high-resolution 2D images.
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The volume presents a need for integrated automated components
and an intuitive interactive workflow.

Common approaches include per-pixel manual analysis of spec-
tral signatures and machine learning approaches. Each 1D spectrum
consists of values of a point across all images. Other approaches
include generating summary products and studying them or their
combinations visually, combining several in red, green, and blue
color channels.

The mineral mapping scenario relies on the knowledge of the
spectral features of the mineral classes for their separation and
identification. Such features are discovered in laboratory spectra
of clean minerals, afterwards they are captured in summary prod-
ucts. The summary products use values, band ratios, band depths,
and spectral slopes around a few selected wavelengths to diagnose
the likelihood of the features to be present in any measured spec-
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trum. Thus, they also can indicate the likelihood that a mineral of
interest is present in a scanned mineral mixture.

However, multiple factors influence the spectral shape in the
remote sensing measurements and complicate the analysis by
diverting the spectral shape from the laboratory results. For
example, even in high-resolution images, each pixel contains infor-
mation about hundreds of square meters of the surface, essentially
creating a mineral mixture signal even when there might be rel-
atively large spots of clean minerals. Additionally, the properties
of the surface like purity, abundance, and grain sizes modify the
resulting spectral shape. Finally, scanning artifacts and noise bring
distortions into the signal.

As the data are perturbed by these factors, the indicators
selected in the laboratory and used in the summary products may
become less usable for the characterization. However, it is com-
mon  practice to rely on the identified summary products without
adjusting them for the actual measured data.

Another difficulty of using summary products is that their out-
put is given in the form of an image with continuous distribution,
which requires additional efforts to define thresholds and separate
different mineral mixtures.

In this paper, we make an attempt to overcome the short-
comings of traditional methods and assess the possibilities of
integration of our approach into the scientific workflow. For the
mineral mapping, we suggest a two-step approach based on inter-
active visual analysis that, first, allows for data-driven adjustment
of the bands selected to represent the spectral features and, second,
for a user-guided extraction of regions with distinct mineral mix-
tures from the data. To document that our approach is not limited
to the mineral mapping scenario, the same approach is applied to
the vegetation classification context, and is able to provide a first
classification estimate from a highly reduced number of bands and
in the absence of a priori knowledge of number of classes or their
properties.

Our contributions can be summarized as follows:

• Application of a dimension-based projection technique to hyper-
spectral bands to produce similarity plots and interactively select
most informative bands for classification.

• Application of multidimensional clustering approach to pixels
of hyperspectral images to extract regions with distinct spectral
signatures (mineral mixtures or vegetation).

• User-guided classification by investigating clustering results
using multiple coordinated views.

2. Hyperspectral data analysis and mineral mapping

The raw hyperspectral data recorded by the detector undergo a
number of processing steps before being investigated. Processing
includes calibration and noise reduction, photometric corrections
(reducing effects of the observation angle), and atmospheric correc-
tions (removing atmospheric absorption bands from the spectra).
For a comprehensive list of typically applied processing steps we
refer to the literature [1]. The outcome of this pre-processing
pipeline is a registered set of cleaned and properly transformed
2D images, one for each of the hyperspectral bands.

Decisions about the mineral composition of the surface are made
by the characteristic absorption features of minerals in the spectral
signal. In other words, the information that is required for making
the decision about a mineral being present or absent at a certain
location is not inherent in the absolute reflectance values of this
point at the certain wavelengths, but stored in the relationships
between values at many wavelengths. Approaches to the anal-
ysis of the hyperspectral data extract this information with the

help of summary products or by the spectral unmixing family of
approaches.

Summary products are designed to capture the particular spec-
tral features. Each of them is aimed at diagnostics of a particular
feature, e.g., BD2100 computes the band depth at 2100 nm wave-
length. The (relative) band depth is defined by the difference of the
amplitude of the measured signal to a fitted baseline. Hence, sum-
mary products try to capture how likely it is that a specific feature is
present in the data coming from the observed point. By combining
several features, the summary products encode how likely it is that
a certain mineral or a mineral group is included in the signal at the
given location. For a comprehensive overview of summary prod-
ucts used in the analysis of CRISM data we  refer to the literature
[2].

Spectral unmixing approaches use libraries of laboratory-taken
spectra of clean minerals. Approaches of this type attempt to com-
bine the library spectra in a way that would model the data best. As
features in measured spectra are influenced not only by the mix-
ture but also by many other factors, the results are only estimates of
the mineral content. Hence, it is desirable to investigate the images
for the bands chosen for the mineral mapping for the given data
set to check their suitability. However, due to the lack of effective
and efficient analysis tools for this task, this is typically not done.
We aim at providing an interactive visual analysis approach to this
task in the first step of our analysis.

Summary products are typically examined using color-coded
images. Visual inspection of certain combinations of these sum-
mary products in RGB images allow scientists to identify mineral
classes present in the data. However, the combination of sum-
mary products of multiple minerals is challenging and quantitative
analysis of the automatically computed summary products is not
provided. Our second analysis step allows for an intuitive interac-
tive analysis and adjustment of an automatically generated result.

An description of analysis methods for hyperspectral imaging
data is provided by Landgrebe [3]. The described approaches as well
as follow-up work in literature is concerned with the classification
of the pixels using various automatic approaches [4–6]. We instead
provide an interactive analysis process, where the user can bring
in his/her expertise into the analysis process by interacting with
visual representations of automatically extracted information in an
iterative work process.

3. Data

The specific hyperspectral data analyzed in the paper were the
following:

• CRISM instrument: up to 438 hyperspectral bands, wavelengths
are from 362 nm to 3920 nm at 6.55 nm/channel, spatial extent
varies by dataset: 640 × 450 pixels (Gale Crater), 800 × 739 pixels
(Nili Fossae), with a resolution of about 20 m/pixel.

• AVIRIS instrument: up to 224 bands, wavelengths are
from 400 nm to 2500 nm,  spatial extent varies by dataset:
217 × 512 pixels (Salinas), 145 × 145 pixels (Pines), 86 × 83 pixels
(Salinas-A spatial subset), with a resolution of about 30 m/pixel.

In both cases we are dealing with an array of 2D images of the
same spatial region, where each image corresponds to a certain
sensor wavelength, and represents a micro-band.

4. Similarity plot of hyperspectral bands

Our visual analysis approach starts with the construction of a
similarity plot for the different spectral bands of the hyperspec-
tral dataset. The idea behind the plot is that it can be used for
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