
Please cite this article in press as: J. González-Domínguez, et al., parSRA: A framework for the parallel execution of short read aligners
on compute clusters, J. Comput. Sci. (2017), http://dx.doi.org/10.1016/j.jocs.2017.01.008

ARTICLE IN PRESSG Model
JOCS-608; No. of Pages 6

Journal of Computational Science xxx (2017) xxx–xxx

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

parSRA: A framework for the parallel execution of short read aligners
on compute clusters

Jorge González-Domíngueza,∗, Christian Hundtb, Bertil Schmidtb

a Computer Architecture Group, University of A Coruña, Spain
b Parallel and Distributed Architectures Group, Johannes Gutenberg University Mainz, Germany

a r t i c l e i n f o

Article history:
Received 12 October 2015
Received in revised form
22 September 2016
Accepted 21 January 2017
Available online xxx

Keywords:
Short read alignment
High performance computing
Multicore clusters
Bioinformatics
PGAS

a b s t r a c t

The growth of next generation sequencing datasets poses as a challenge to the alignment of reads to
reference genomes in terms of both accuracy and speed. In this work we present parSRA, a parallel
framework to accelerate the execution of existing short read aligners on distributed-memory systems.
parSRA can be used to parallelize a variety of short read alignment tools installed in the system without any
modification to their source code. We show that our framework provides good scalability on a compute
cluster for accelerating the popular BWA-MEM and Bowtie2 aligners. On average, it is able to accelerate
sequence alignments on 16 64-core nodes (in total, 1024 cores) with speedup of 10.48 compared to the
original multithreaded tools running with 64 threads on one node. It is also faster and more scalable than
the pMap and BigBWA frameworks. Source code of parSRA in C++ and UPC++ running on Linux systems
with support for FUSE is freely available at https://sourceforge.net/projects/parsra/.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Short read alignment (SRA) is a crucial step in many bioinformat-
ics pipelines. It consists in mapping DNA fragments (called reads)
onto a reference genome, in order to locate the genomic coordinates
these fragments come from. The rapid progress of next generation
sequencing (NGS) technologies has led to large-scale datasets con-
taining hundreds of millions or even billions of reads, which makes
the SRA step time consuming.

Although efficient seed-and-extend based algorithms that
provide high-quality alignments have been developed, their asso-
ciated runtimes are still high. Examples include GASSST [1], Bowtie2
[2], GEM [3], SeqAlto [4], BWA-MEM [5] and CUSHAW3 [8]. The main
algorithmic idea applied by all these tools are based on the fact
that significant alignments usually contain short exact matches (so
called seeds). Typical short read aligners thus map a given read
by first identifying such seeds on the given reference genome.
This is usually accomplished by using a pre-computed index data
structure that allows for fast retrieval of short exact matches
between query and reference genome. Subsequently, these seeds
are extended and refined under certain constraints, such as mini-
mal percentage identity or length, in order to filter out irrelevant

∗ Corresponding author.
E-mail addresses: jgonzalezd@udc.es (J. González-Domínguez),

hundt@uni-mainz.de (C. Hundt), bertil.schmidt@uni-mainz.de (B. Schmidt).

seeds. Finally, more sophisticated but also computationally more
expensive approaches (e.g., dynamic programming based align-
ment algorithms) are employed to obtain the final alignments from
the seeds. It should be noted that the time needed for the alignment
of each read can vary as it depends on the number of associated
seeds.

Parallelization can be used to accelerate this procedure. Most
existing SRA tools only provide shared memory parallelism based
on multi-threading, which limits their execution to single com-
pute nodes. In order to overcome this limitation, there exist parallel
implementations of certain SRA tools that can be executed on mul-
ticore clusters and exploit the computing capabilities of several
nodes (e.g., pBWA [9] and merAligner [8]). However, the accuracy of
the results provided by these multinode implementations is limited
to only one mapping approach and they do not offer portability for
the underlying aligner. For instance, pBWA is limited to a particular
version of the BWA aligner [9].

Research on SRA approaches is still evolving and new methods
with better accuracy in some scenarios are continuously devel-
oped. Therefore, it is not advisable to limit parallel frameworks
to work with only one type of alignment (e.g. pBWA only works
with the outdated 0.5.9 version of the BWA method). pMap [10]
is a parallel framework that allows for working with several
existing and previously installed tools (e.g., Bowtie2, BWA-MEM
or CUSHAW3). It splits the workload among nodes and uses the
selected method to complete the alignment in parallel on multiple
compute nodes within a cluster. However, as will be shown in

http://dx.doi.org/10.1016/j.jocs.2017.01.008
1877-7503/© 2017 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2017.01.008
dx.doi.org/10.1016/j.jocs.2017.01.008
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
https://sourceforge.net/projects/parsra/
https://sourceforge.net/projects/parsra/
https://sourceforge.net/projects/parsra/
https://sourceforge.net/projects/parsra/
https://sourceforge.net/projects/parsra/
https://sourceforge.net/projects/parsra/
mailto:jgonzalezd@udc.es
mailto:hundt@uni-mainz.de
mailto:bertil.schmidt@uni-mainz.de
dx.doi.org/10.1016/j.jocs.2017.01.008

Please cite this article in press as: J. González-Domínguez, et al., parSRA: A framework for the parallel execution of short read aligners
on compute clusters, J. Comput. Sci. (2017), http://dx.doi.org/10.1016/j.jocs.2017.01.008

ARTICLE IN PRESSG Model
JOCS-608; No. of Pages 6

2 J. González-Domínguez et al. / Journal of Computational Science xxx (2017) xxx–xxx

the experimental evaluation, the scalability of pMap is low even
for a moderate number of nodes. Recently, approaches based on
the map-reduce paradigm have been presented for distributed
execution of the BWA aligner [11–13]. However, their scalability
is limited to a small number of compute nodes.

In this paper we present parSRA, a novel framework to parallelize
SRA on multicore clusters which can work with different underly-
ing methods and provides significantly better scalability than pMap.
parSRA can use the most suitable alignment method for each situ-
ation, and even more accurate methods that can be developed in
future. Moreover, parSRA is even more portable than pMap as its
configuration file allows for the users to parallelize the execution
of existing SRA tools without the need to modify the source code of
parSRA or the aligner.

The rest of the paper is organized as follows. Section 2 reviews
some related work. Our parallelization approach is described in
Section 3. Experimental evaluations are presented in Section 4.
Section 5 concludes the paper.

2. Related work

The implementation of parallel tools for SRA that resort to accel-
erators to reduce their runtime has attracted extensive research
interests. The most popular accelerators for SRA are GPUs, and
some examples of GPU-based tools are CUSHAW [14], CUSHAW2-
GPU [15], BarraCUDA [16], SOAP3 [17], SOAP3-db [18] and nvBowtie
[19]. Other examples include FPGA and Xeon Phi implementations
such as [20,21].

So far, not much effort has been made to develop tools able to
exploit the characteristics of compute clusters. For instance, there
is no parallel SRA implementation using workflow systems such
as Swift/T [22] or SciCumulus [23]. Three examples of map-reduce
based SRA aligners are BigBWA [11], SEAL [12] and SparkBWA [13],
which are limited to the BWA method [9]. Regarding the message-
passing paradigm, pBWA [9] and pMap [10] use MPI to distribute the
reads among the processes and align the assigned reads on each
process. While pBWA is also limited to the BWA aligner, pMap is
portable enough to be able to work with several different aligners.
The current publicly available version of pMap provides support for
some popular aligners. Moreover, the source code can be modified
in the case that we want to work with a new aligner. Both pBWA and
pMap suffer from two major problems that limit their scalability.
First, the overhead of their initial file splitting is significant, espe-
cially when increasing the number of processes. Moreover, they
apply a static distribution that assigns the same number of reads to
each MPI process. As the time to align one read can vary, a simple
static distribution cannot achieve good load balancing.

In this paper we describe parSRA, a novel framework to execute
short read aligners on compute clusters. Our parallel implementa-
tion overcomes the scalability issues of pMap thanks to:

1 A fast splitting of the input reads using the FUSE kernel module
[24].

2 Gathering of results into a unique output file using OS commands.
3 A balanced on-demand distribution of the reads based on the

shared locks of UPC++ [25].

UPC++ is an extension of C++ for parallel computing which has
evolved from Unified Parallel C (UPC) [26]. PGAS languages (such
as UPC, Co-Array Fortran [27] or Titanium [28]) are often easier to
use than their message passing counterparts [29,30] and can also
obtain better performance by using efficient one-sided commu-
nication [31–33]. UPC++ combines these advantages of the PGAS
model with object oriented programming. Both UPC and UPC++

have recently been used for the parallelization of bioinformatics
applications [8,34,35].

merAligner [8] is a parallel UPC-based sequence aligner for
distributed-memory architectures which obtains good scalability
on multicore clusters. Although this tool is also an aligner, it is
focused on scenarios where the reference genome is very large and
thus represented as a (distributed) collection of contigs. According
to the results provided by the authors, the whole procedure (index
construction and sequence mapping) is faster in merAligner than
in pMap. However, the scalability of the alignment step on several
nodes is lower than that of pMap. merAligner also optimizes the dis-
tribution of the genome in case that it is too large to fit in one node.
However, the goal of our work is the parallelization of the type of
aligners presented in the previous section, that work with genomes
that fit in the memory of one node (which is typically the case for a
human reference genome; the most common use case). There is no
restriction related to the size of the dataset with the reads to align
in parSRA. Furthermore, merAligner does not provide portability to
existing aligners.

3. Implementation

The aim of parSRA is to accelerate the SRA while preserving the
quality of the results provided by the underlying aligner. There-
fore, we do not modify the source code of the aligners. Fig. 1 shows
the workflow of a parSRA execution. The procedure starts with one
process splitting the files through FUSE as will be explained in Sec-
tion 3.1. Once all the virtual files have been created, all processes
simultaneously align the reads. Each process calls the underlying
aligner (e.g., BWA-MEM or Bowtie2) several times with different
FUSE files. The assignment of virtual files to processes is described
in Section 3.2. Each process writes its results into a different inter-
mediate file (i.e., there are as many intermediate files as processes).
Finally, once all reads have been aligned, the results are gathered
into a unique output file. This is carried out again by only one
process using the OS commands to concatenate files.

All the information to perform the alignment is indicated by the
user in a configuration file. One important parameter that must be
included in this configuration file is the number of blocks (virtual
files) that will be generated from the original input file. Increasing

Fig. 1. Workflow of parSRA. All processes work in parallel to align different reads
while Process 0 splits the input file and gathers the output.

dx.doi.org/10.1016/j.jocs.2017.01.008

Download English Version:

https://daneshyari.com/en/article/6874391

Download Persian Version:

https://daneshyari.com/article/6874391

Daneshyari.com

https://daneshyari.com/en/article/6874391
https://daneshyari.com/article/6874391
https://daneshyari.com

