
Please cite this article in press as: S. Catalán, et al., Multi-threaded dense linear algebra libraries for low-power asymmetric multicore
processors, J. Comput. Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.10.020

ARTICLE IN PRESSG Model
JOCS-570; No. of Pages 12

Journal of Computational Science xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Multi-threaded dense linear algebra libraries for low-power
asymmetric multicore processors

Sandra Catalána, José R. Herrerob, Francisco D. Igual c,∗, Rafael Rodríguez-Sáncheza,
Enrique S. Quintana-Ortí a, Chris Adeniyi-Jonesd

a Depto. Ingeniería y Ciencia de Computadores, Universidad Jaume I, Castellón, Spain
b Dept. d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, Spain
c Depto. de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, Spain
d ARM Research, Software and Large Scale Systems, Cambridge, United Kingdom

a r t i c l e i n f o

Article history:
Received 6 November 2015
Received in revised form 30 August 2016
Accepted 31 October 2016
Available online xxx

Keywords:
Dense linear algebra
BLAS
LAPACK
Asymmetric multicore processors
Multi-threading
High performance computing

a b s t r a c t

Dense linear algebra libraries, such as BLAS and LAPACK, provide a relevant collection of numerical tools
for many scientific and engineering applications. While there exist high performance implementations
of the BLAS (and LAPACK) functionality for many current multi-threaded architectures, the adaption of
these libraries for asymmetric multicore processors (AMPs) is still pending. In this paper we address this
challenge by developing an asymmetry-aware implementation of the BLAS, based on the BLIS framework,
and tailored for AMPs equipped with two types of cores: fast/power-hungry versus slow/energy-efficient.
For this purpose, we integrate coarse-grain and fine-grain parallelization strategies into the library rout-
ines which, respectively, dynamically distribute the workload between the two core types and statically
repartition this work among the cores of the same type.

Our results on an ARM® big.LITTLETM processor embedded in the Exynos 5422 SoC, using the
asymmetry-aware version of the BLAS and a plain migration of the legacy version of LAPACK, experi-
mentally assess the benefits, limitations, and potential of this approach from the perspectives of both
throughput and energy efficiency.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Dense linear algebra (DLA) is at the bottom of the “food chain” for
many scientific and engineering applications, which can be often
decomposed into a collection of linear systems of equations, lin-
ear least squares (LLS) problems, rank-revealing computations, and
eigenvalue problems [1]. The importance of these linear algebra
operations is well recognized and, from the numerical point of view,
when they involve dense matrices, their solution can be reliably
addressed using the Linear Algebra PACKage (LAPACK) [2].

To attain portable performance, LAPACK routines cast a major
fraction of their computations in terms of a reduced number of Basic
Linear Algebra Subprograms (BLAS) [3–5], employing an implemen-
tation of the BLAS specifically optimized for the target platform.
Therefore, it comes as no surprise that nowadays there exist both

∗ Corresponding author.
E-mail addresses: catalans@uji.es (S. Catalán), josepr@ac.upc.edu (J.R. Herrero),

figual@ucm.es (F.D. Igual), rarodrig@uji.es (R. Rodríguez-Sánchez), quintana@uji.es
(E.S. Quintana-Ortí), Chris.AdeniyiJones@arm.com (C. Adeniyi-Jones).

commercial and open source implementations of the BLAS target-
ing a plethora of architectures, available among others in AMD
ACML [6], IBM ESSL [7], Intel MKL [8], NVIDIA CUBLAS [9], ATLAS
[10], GotoBLAS [11], OpenBLAS [12], and BLIS [13]. Many of these
implementations offer multi-threaded kernels that can exploit the
hardware parallelism of a general-purpose multicore processor or,
in the case of NVIDIA’s BLAS, even those in a many-core graphics
processing unit (GPU).

Asymmetric multicore processors (AMPs), such as the recent
ARM® big.LITTLETM systems-on-chip (SoC), are a particular class of
heterogeneous architectures that combine a few high performance
(but power hungry) cores with a collection of energy efficient
(though slower) cores.1 With the end of Dennard scaling [14], but
the steady doubling of transistors in CMOS chips at the pace dic-
tated by Moore’s law [15], AMPs have gained considerable appeal
as, in theory, they can deliver much higher performance for the
same power budget [16–19].

1 AMPs differ from a heterogeneous SoC like the NVIDIA Tegra TK1, in that the
cores of the AMP share the same instruction set architecture (ISA).

http://dx.doi.org/10.1016/j.jocs.2016.10.020
1877-7503/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2016.10.020
dx.doi.org/10.1016/j.jocs.2016.10.020
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:catalans@uji.es
mailto:josepr@ac.upc.edu
mailto:figual@ucm.es
mailto:rarodrig@uji.es
mailto:quintana@uji.es
mailto:Chris.AdeniyiJones@arm.com
dx.doi.org/10.1016/j.jocs.2016.10.020

Please cite this article in press as: S. Catalán, et al., Multi-threaded dense linear algebra libraries for low-power asymmetric multicore
processors, J. Comput. Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.10.020

ARTICLE IN PRESSG Model
JOCS-570; No. of Pages 12

2 S. Catalán et al. / Journal of Computational Science xxx (2016) xxx–xxx

In past work [20], we demonstrated how to adapt BLIS in order
to attain high performance for the multiplication of two square
matrices, on an ARM big.LITTLE AMP consisting of ARM Cortex-A15
and Cortex-A7 clusters. In this paper, we significantly extend our
previous work by applying similar parallelization principles to the
complete Level-3 BLAS (BLAS-3), and we evaluate the impact of
these optimizations on LAPACK. In particular, our work makes the
following contributions:

• Starting from the reference implementation of the BLIS library
(version 0.1.8), we develop a multi-threaded parallelization of
the complete BLAS-3 for any generic AMPs, tailoring it for the
ARM big.LITTLE AMP embedded in the Samsung Exynos 5422
SoC in particular. Furthermore, we demonstrate the generality
of the approach by applying the same parallelization principles
to develop a tuned version of BLIS for the 64-bit ARM big.LITTLE
AMP in the Juno ARM development platform.

These tuned kernels not only distinguish between different
operations (e.g., paying special care to the parallelization of
the triangular system solve), but also take into consideration
the operands’ dimensions (shapes). This is especially interesting
because, in general, the BLAS-3 are often invoked from LAPACK
to operate on highly non-square matrix blocks.

• We validate the correction of the new BLIS-3 by integrating them
with the legacy implementation of LAPACK (version 3.5.0) from
the netlib public repository.2

• We illustrate the computational performance and practical
energy efficiency that can be attained from a straight-forward
migration and execution of LAPACK, on top of the new BLIS-3 for
the Exynos 5422, that basically adjusts the algorithmic block sizes
and only carries out other minor modifications.

In particular, our experiments with three relevant matrix rout-
ines from LAPACK, key for the solution of linear systems and
symmetric eigenvalue problems, show a case of success for a
matrix factorization routine; a second scenario where a signif-
icant modification of the LAPACK routine could yield important
performance gains; and a third case where performance is limited
by the memory bandwidth, but a multi-threaded implementation
of the Level-2 BLAS [4] could render a moderate improvement in
the results.

To conclude, we emphasize that the general parallelization
approach proposed in this paper for AMPs can be ported, with little
effort, to present and future instances of the ARM big.LITTLE archi-
tecture as well as to any other asymmetric design in general (e.g.,
the Intel QuickIA prototype [21], or general-purpose SMPs with
cores running at different frequencies).

The rest of the paper is structured as follows. In Section 2, we
briefly review the foundations of BLIS, and we discuss two distinct
approaches (though complementary under certain conditions) to
extract parallelism from LAPACK, based on a runtime that exploits
task-parallelism and/or by leveraging a multi-threaded implemen-
tation of the BLAS. In Section 3, we introduce and evaluate our
multi-threaded implementation of the complete BLIS-3, for matrix
operands of distinct shapes, tuned for the big.LITTLE AMP archi-
tectures in the Exynos 5422 SoC and the ARM Juno platform. In
Section 4, we illustrate the impact of leveraging our platform-
specific BLIS-3 from LAPACK using three key operations. Finally,
in Section 5 we offer a few concluding remarks and discuss future
work.

2 Available at http://www.netlib.org/lapack.

Fig. 1. High performance implementation of the matrix multiplication in BLIS. In
the code, Cc ≡ C(ic : ic + mc − 1, jc : jc + nc − 1) is just a notation artifact, introduced to
ease the presentation of the algorithm, while Ac , Bc correspond to actual buffers that
are involved in data copies.

2. BLIS and other related work

2.1. BLIS

The conventional and easiest approach to obtain a parallel exe-
cution of LAPACK, on a multicore architecture, simply leverages
a multi-threaded implementation of the BLAS that partitions the
work among the computational resources, thus isolating LAPACK
from this task. For problems of small to moderate dimension, plat-
forms with a low number of cores, and/or DLA operations with
simple data dependencies (like those in the BLAS-3), this approach
usually provides optimal efficiency. Indeed, this is basically the pre-
ferred option adopted by many commercial implementations of
LAPACK.

Most modern implementations of the BLAS follow the path pio-
neered by GotoBLAS to implement the kernels in BLAS-3 as three
nested loops around two packing routines, which orchestrate the
transfer of data between consecutive levels of the cache-memory
hierarchy, and a macro-kernel in charge of performing the actual
computations. BLIS internally decomposes the macro-kernel into
two additional loops around a micro-kernel that, in turn, is imple-
mented as a loop around a symmetric rank-1 update (see Fig. 1). In
practice, the micro-kernel is encoded in assembly or in C enhanced
with vector intrinsics; see [13] for details.

A multi-threaded parallelization of the matrix multiplication
(gemm) in BLIS for conventional symmetric multicore processors
(SMPs) and modern many-threaded architectures was presented
in [22,23]. These parallel implementations exploit the concurrency
available in the nested five-loop organization of gemm at one or
more levels (i.e., loops), taking into account the cache organization
of the target platform, the granularity of the computations, and the
risk of race conditions, among other factors.

In [20] we leverage similar design principles to propose a high
performance implementation of the gemm kernel from BLIS for an
ARM big.LITTLE SoC with two quad-core clusters, consisting of ARM
Cortex-A15 and ARM Cortex-A7 cores. Specifically, starting from
the BLIS code for gemm, we modify the loop stride configuration and
scheduling policy to carefully distribute the micro-kernels com-
prised by certain loops among the ARM Cortex-A15 and Cortex-A7
clusters and cores taking into consideration their computational
power and cache organization.

2.2. Runtime-based task-parallel LAPACK

Extracting task parallelism has been recently proved to yield
an efficient means to tackle the computational power of current
general-purpose multicore and many-core processors. Following
the path pioneered by Cilk [24], several research efforts ease the
development and improve the performance of task-parallel pro-
grams by embedding task scheduling inside a runtime. The benefits
of this approach for complex DLA operations have been reported,

dx.doi.org/10.1016/j.jocs.2016.10.020
http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://www.netlib.org/lapack

Download	English	Version:

https://daneshyari.com/en/article/6874392

Download	Persian	Version:

https://daneshyari.com/article/6874392

Daneshyari.com

https://daneshyari.com/en/article/6874392
https://daneshyari.com/article/6874392
https://daneshyari.com/

