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a  b  s  t  r  a  c  t

In this  paper,  a  parallel  computational  algorithm  is  developed  based  on  finite  element  tearing  and
interconnecting  (FETI)  method,  specifically,  localized  Lagrange  multipliers.  The  proposed  FETI  method
decomposes  large-size  structures  into  non-overlapping  subdomains  via  localized  Lagrange  multipliers.
To  consider  the  curved  configuration  of  large-size  structures,  a  facet  shell  element  created  by  combin-
ing an optimal  triangle  membrane  and  discrete  Kirchhoff  triangle  bending  plate  (OPT-DKT)  is  suggested
and  used  by  introducing  rotational  operators.  Moreover,  practical  performance  of the  present  OPT-DKT
facet  shell  element  is  evaluated  through  static  and  dynamic  analysis.  Finally,  parallel  computation  is
implemented  for the proposed  approach  using  message  passing  interface  (MPI).

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

With the enhancement of computational hardware and soft-
ware over the past few decades, it became more and more
capable of conducting large-size computational analysis for com-
plex configurations. As the number of elements and grids increases,
computational costs will also increase, such as hundreds of hours
for computational time and gigabytes of memory usage. To relieve
such increased time and memory usage, the domain decomposition
techniques were suggested. The main purpose of that approach was
to divide the entire domain into the number of smaller domains so
that each domain might be processed in parallel environment. The
domain decomposition method can be classified into the overlap-
ping and non-overlapping methods. In the over-lapping method,
sub-domains on the interface regions and unknown variables
are analyzed by iterative methods while prescribed by Dirichlet
boundary conditions. In the non-overlapping methods, however,
sub-domains on the interfaces with Lagrange multipliers are solved
by either iterative or direct solvers depending on the condition
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number of the relevant matrices [2,3]. One of the most success-
ful non-overlapping methods is the finite element tearing and
interconnecting (FETI) method. The original FETI method utilized a
parallel algorithm for the second-order partial differential equa-
tions (PDEs) [5]. This method was further extended to consider
the original second- and fourth-order PDEs [6,8]. The computa-
tional domains were decomposed into various non-overlapping
subdomains, while Lagrange multipliers were used to enforce the
compatibility of the displacements along the interconnecting sub-
domains. Recently, the dual-primal FETI (FETI-DP) method was
developed that made it feasible to obtain a standard precondi-
tioned conjugate gradient algorithm (PCG), which was not used in
the original FETI method [7]. The basic idea of FETI-DP method is to
introduce Lagrange multipliers into the coarse nodes. By estimating
a saddle-point of the Lagrangian functional, the resulting equa-
tion can be solved by iterative methods. But both original FETI and
FETI-DP method require a good preconditioner related with itera-
tive methods to solve the interface problem, which may  degrade
efficiency of the entire solution procedure.

In flexible multibody dynamic formulations, finite element
analysis with Lagrange multipliers has been used [1]. Lagrange
multipliers were used to enforce various kinematic constraints
among the multiple bodies. To solve the resulting nonlinear prob-
lems, augmented Lagrange formulation (ALF) was established to
enhance the flexibility matrix conditioning. In addition, localized
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Fig. 1. Geometry of the present OPT-DKT shell element.

Lagrange multipliers were adopted as penalty formulations to
enhance the solution accuracy. Both serial and parallel algorithms
for Lagrange multipliers based on the FETI method were devel-
oped [17,18]. Moreover, the scalability was evaluated using the
localized Lagrange multipliers applied to both large-size structural
analysis and flexible multibody dynamics [14,15]. The localized
Lagrange multipliers as penalty term improve the condition num-
ber of the matrices to approach unity, which allows the direct
solver to be applicable. Effectiveness of the localized Lagrange mul-
tipliers was already proved rigorously in Ref. 17 and the present
authors demonstrated numerically for the case of the static, two-
dimensional plane stress structure situation in [15].

In this study, a three-dimensional OPT-DKT shell element is
used to analyze the curved configuration of large-size structure
[4,9,10,12,19]. A rotational operator is used to obtain elemen-
tal stiffness matrix and the internal load vector for the curved
configuration [11]. FETI-type algorithm (hereafter referred to as
FETI-local) is also proposed by adopting localized Lagrange mul-
tipliers to enhance the compatibility of displacements along the
boundary nodes in each subdomain. Isotropic/anisotropic property
along with the thin-wall configuration is used. All the localized
Lagrange multipliers are additionally defined in each boundary
node along the interconnecting subdomain. All the penalty terms
are equally applied as the spring coefficients for the multiplication
results of Lagrange multipliers, while the penalty term affects reac-
tion forces in each subdomain. Validation of the present OPT-DKT
shell elements is completed by comparing with the commercial
software in terms of both static and dynamic analysis. Because of
the improved condition number for the matrices, it becomes possi-
ble to use a parallel sparse direct solver library, such as PARDISO to
solve the issues of the sparse stiffness matrices induced by the shell
elements. Finally, the present FETI-local methodology is imple-
mented in parallel computing environments based on FORTRAN 90
with the message passing interface (MPI), to achieve similar results
of reduced computational time and memory usage.

2. OPT-DKT shell elements

An OPT-DKT shell element is created by combining an OPT mem-
brane element and a DKT plate bending element. Each element
exhibits eighteen degrees-of-freedom; moreover, each element is
divided into three nodes, each exhibiting six degrees-of-freedom
(three translations and three rotations).

2.1. Definition of the geometric parameters

Fig. 1 illustrates the present OPT-DKT shell element geome-
try. The flat triangular element (OPT) has three nodes with three

Fig. 2. Re-defined new three-nodes in x-y plane by using rotational operator.

degrees-of-freedom at each node. Global and local coordinate sys-
tems are denoted as (X, Y, Z) and (x, y, z), respectively. Based on
the local coordinates

(
xij, yij

)
, the elemental geometric parameters

length
(
lij
)

, area(A), and volume (V) are defined as(
xij, yij

)
=

(
xi − xj, yi − yj

)
(1)
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√
x2
ij

+ y2
ij

(2)

A = 1
2

(y21x13 − x21y13) (3)

V = At (4)

2.2. Rotational operators

For a curved configuration, it is necessary to define the local
coordinates with respect to three orthogonal vectors: the x-y plane
and its normal vector. In order to obtain the exact elemental stiff-
ness matrix and internal load vector based on the shell element,
it is necessary to use a rotational operator that adjusts the nor-
mal  vector of out-of-plane with respect to the three nodes of the
x-y plane at each element. Fig. 2 illustrates the result of projecting
the configuration onto the x-y plane using the rotational operator,
which defines new three-nodes in the local coordinates based on
the physical three-nodes in the fixed coordinates, to exploit the
conventional OPT-DKT shell formulation.

Let el,i denote the ith axis vector on the shell element in the
local coordinates. The rotational operator can be described as
r =

{
el,1 el,2 el,3

}
. For the first axis vector on the shell ele-

ment, el,1 can be established by selecting the first basis vector
rba = (Xb − Xa, Yb − Ya, Zb − Za).

el,1 = rba
‖rba‖

(5)

To define new three-nodes on the x-y plane in the local coordi-
nates, the third coordinate axis orthogonal to the x-y plane in the
local coordinates can be obtained by using rba and rca:

el,3 = rba × rca
‖rba × rca‖

(6)

The remaining coordinate axis is described as

el,2 = el,3 × el,1 (7)

By multiplying the rotational operator, newly defined three-
nodes are always imposed on the x-y plane in the local coordinates.{
x
}

= r
{
X
}

(8)
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