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a  b  s  t  r  a  c  t

Cardiac  computational  models,  individually  personalized,  can  provide  clinicians  with  useful  diagnostic
information  and  aid  in treatment  planning.  A major  bottleneck  in this  process  can  be determining  model
parameters  to fit  created  models  to individual  patient  data.  However,  adjoint-based  data  assimilation
techniques  can  now  rapidly  estimate  high  dimensional  parameter  sets.  This  method  is  used  on  a cohort  of
heart failure  patients,  capturing  cardiac  mechanical  information  and  comparing  it with  a  healthy  control
group.  Excellent  fit  (R2 ≥ 0.95)  to  systolic  strains  is  obtained,  and  analysis  shows  a  significant  difference
in  estimated  contractility  between  the  two groups.

©  2017  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Patient-specific cardiac modeling has emerged as a potential
tool for clinical diagnosis as well as treatment optimization [1].
By linking patient measurements to physical processes through a
mathematical framework, models can provide us with additional
insight into cardiac function or dysfunction at the level of the indi-
vidual. However, the complexity of the heart makes this difficult,
and this is recognized as a key challenge in modern bioengineering
[2].

One difficulty is the effort to personalize models and simula-
tions to individual patients. While a wealth of clinical data exists to
parameterize such ‘patient-specific’ models, methods to assimilate
this data into simulations can involve extensive computation time,
often putting them outside the scope of clinical utility. However,
new methods are emerging to improve the flow of clinical measure-
ments into powerful data driven simulations. Automated geometry
segmentation [3] and improved optimization techniques [4], can
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improve the speed at which patient-specific models can be built and
parameterized. In particular, recent advancements in adjoint-based
data assimilation techniques [5] offer an efficient way to assimilate
ventricular mechanical information using highly spatially resolved
parameters.

Here we use an adjoint based assimilation method with a
mechanical model in order to construct simulations that accu-
rately reflect clinical motion data, both for healthy controls and
patients suffering from left bundle branch block (LBBB). The use of
a highly spatially resolved contraction parameter, enabled through
adjoint-methods, provides excellent data fit to measured strains
and volumes, and fit models provide estimates of cardiac contrac-
tion. Such biomarkers may  prove useful to clinicians for diagnoses
of problems with cardiac function, and to better plan therapies.

2. Materials and methods

2.1. Data acquisition

Clinical measurements of cardiac function for seven LBBB
patients were obtained from the Impact study [6]. Data was
also acquired for seven healthy volunteers. 4D echocardiographic
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Fig. 1. Left: Automated anatomical modeling pipeline to produce AHA marked simulation meshes with applied fiber orientations from 3D echocardiographic segmentations.
Right:  Optimization pipeline. 1. Unloaded geometry and the linear isotropic material parameter a in (1) are estimated iteratively. The unloaded geometry is estimated based
on  the backward displacement method (1a) [13] and a is estimated by minimizing the difference between simulated and measured volumes (1b). 2. The unloaded geometry
and  the material properties are fixed, and the amount of contraction (� for active strain and Ta for active stress) is estimated by minimizing the mismatch between simulated
and  measured strain and volume. The active optimization continues to the next measurement point until all measurement points in the cycle are covered.

images of the left ventricle (LV), for both the LBBB patients and
healthy subjects, were captured using a GE Vingmed E9 device,
and analysis carried out with the software package EchoPac. For
each subject, depending on frame rate and cardiac cycle time,
the analysis provided between 15 and 50 LV volumes, geometric
segmentations of the LV endocardium and epicardium, and car-
diac strain calculated via speckle tracking. The strain were defined
according to the 17 segment AHA-zone representation [7], in the
longitudinal, radial and circumferential direction, giving a total of
51 strain measurements per time point, with the reference time
point for strain analysis being the first frame after onset of QRS.

The LBBB patients had LV pressure measurements taken during
implantation of a cardiac resynchronization therapy (CRT) device,
and valvular events were used to synchronize the pressure to the
echo data. In the healthy control group, where invasive pressure
measurements were absent, the pressure waveform from one of
the LBBB patients was used and scaled to reported values of the
end-diastolic and end-systolic left ventricular pressure [Table 30-1
in [8]].

2.2. Automated geometry and microstructure creation

For each patient, a 3D tetrahedral mesh of the LV was con-
structed from triangulated segmented surfaces of the endo- and
epicardium corresponding to the frame at the beginning of atrial
systole, Fig. 1. A cut was made at the ventricular base of the segmen-
tation, so that the mesh cavity volume and the ultrasound measured
volume differed by less than 1 ml.  Mesh cells were marked into the
17 AHA regions through the regionally delineated strain data, and
the myocardial fiber orientation, denoted by f0, were assigned using
the algorithm from Bayer et al. [9], with the endo- and epicardial
helix fiber angles set to ˛endo = 60 and ˛epi =−60, respectively.

2.3. Mechanical model

We  represent the heart as a hyperelastic continuum body, where
the coordinates in the reference (X) and the current (x) configura-
tion are related via the displacement field u = x − X. Furthermore,
we utilize the deformation gradient, the determinant of the defor-
mation gradient and, the right Cauchy–Green deformation tensor
given by F = I + ∇ u, J = detF and C = FTF, respectively. To model the
passive behavior of the myocardium, the transversely isotropic

strain energy function proposed in [10] is adopted:
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Here I1 = tr C and I4f0
= f0 · (Cf0) are invariants of C, (·)+ = max{ ·, 0},

and a, af, b, bf are material stiffness parameters defining the elas-
tic properties of the myocardium. We follow a common approach
and assume that the myocardium is incompressible. Incompress-
ibility is incorporated in the model by using a two-field variational
approach, where we introduce a Lagrange multiplier p which rep-
resents the hydrostatic pressure, and the term p(J − 1) is added to
the strain-energy.

To model the active response we apply the approach of active
strain [11], which is based on decomposing the deformation gra-
dient into active and passive contributions, F = FeFa. We  choose
Fa = (1 − �)f0 ⊗ f0 + 1√

1−� (I − f0 ⊗ f0), where � is a parameter that

represents the relative active shortening along the fibers. For refer-
ence, we  have also performed tests with the commonly used active
stress formulation, where the stress tensor is additively decom-
posed into active and passive stress � = �p + �a. Here �p is the elastic
material response, and �a = Taf ⊗ f with f = Ff0 and Ta a scalar vari-
able representing active fiber tension.

For both approaches, the resulting displacement field u and
hydrostatic pressure p are determined by using the principle of
stationary potential energy [12], which is based on minimizing the
total energy �(u, p), which includes internal energy derived from
(1) and external energy. The external energy includes contributions
from the measured cavity pressure pLV, and a linear spring term at
the basal boundary, with spring constant k = 10.0 kPa. The equilib-
rium solution is found by solving for the minimum potential energy,
ı�(u, p) = 0.

2.4. Data assimilation

In order to constrain the model to each patient’s clinical mea-
surements, we consider a PDE-constrained optimization problem
where the objective functional is given by the misfit between sim-
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