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a  b  s  t  r  a  c  t

This  paper  deals  with the exact  calibration  of semidiscretized  stochastic  local  volatility  (SLV)  models
to  their  underlying  semidiscretized  local  volatility  (LV)  models.  Under  an  SLV  model,  it is  common  to
approximate  the fair value  of  European-style  options  by semidiscretizing  the  backward  Kolmogorov
equation  using  finite  differences.  In the  present  paper  we  introduce  an adjoint  semidiscretization  of
the  corresponding  forward  Kolmogorov  equation.  This  adjoint  semidiscretization  is  used  to  obtain  an
expression  for the  leverage  function  in  the  pertinent  SLV  model  such  that  the  approximated  fair  values
defined  by  the  LV  and  SLV  models  are  identical  for non-path-dependent  European-style  options.  In order
to employ  this  expression,  a large  non-linear  system  of  ODEs  needs  to  be  solved.  The actual  numerical
calibration  is performed  by  combining  ADI  time  stepping  with  an  inner  iteration  to  handle  the  non-
linearity.  Ample  numerical  experiments  are  presented  that  illustrate  the  effectiveness  of  the  calibration
procedure.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In contemporary financial mathematics, stochastic local volatility
(SLV) models are state-of-the-art for describing asset price pro-
cesses, notably foreign exchange (FX) rates, see e.g. [21,29]. They
constitute a natural combination of local volatility (LV) and stochas-
tic volatility (SV) models. Denote by S� > 0 the FX rate at time � ≥ 0
and consider the standard transformed variable X� = log(S� /S0). We
deal in this paper with general SLV models of the type

⎧⎨
⎩
dX� = (rd − rf − 1

2
�2
SLV (X�, �) 2(V�))d� + �SLV (X�, �) (V�)dW

(1)
� ,

dV� = �(� − V�)d� + �V˛� dW
(2)
� ,

(1.1)

with  (v) a non-negative function,  ̨ a non-negative parameter,
�, �, � strictly positive parameters, dW (1)

� · dW (2)
� = �d�, −1 ≤ � ≤ 1,

and given spot values S0, V0. The function �SLV(x, �) is often called the
leverage function and rd, respectively rf, denotes the risk-free inter-
est rate in the domestic currency, respectively foreign currency. The
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SLV model (1.1) can be viewed as obtained from a mixture of the
LV model

dXLV,� = (rd − rf − 1
2
�2
LV (XLV,�, �))d� + �LV (XLV,�, �)dW�, (1.2)

with LV function �LV(x, �), and the SV model{
dXSV,� = (rd − rf −  2(VSV,�))d� +  (VSV,�)dW

(1)
� ,

dVSV,� = �(� − VSV,�)d� + �V˛SV,�dW
(2)
� .

(1.3)

Clearly, if �SLV(x, �) is identically equal to one, then the SLV model
reduces to a SV model. Next, if the stochastic volatility parameter
� is equal to zero, then the SLV model reduces to a LV model.

The choice  (v) = √
v,  ̨ = 1/2 corresponds to the well-known

Heston-based S(L)V model, the choice  (v) = v,  ̨ = 1 to the
S(L)V model considered in [29] and the choice  (v) = exp(v),

 ̨ = 0 corresponds to the S(L)V model based on the exponential
Ornstein–Uhlenbeck model described in [27].

If  ̨ is strictly positive, we assume that  (0) = 0 and the pro-
cesses V� , VSV,� are non-negative. For 0 <  ̨ < 1/2 it holds that V� = 0
is attainable, for  ̨ > 1/2 it holds that V� = 0 is unattainable, and for

 ̨ = 1/2 one has that V� = 0 is attainable if 2�� < �2, see e.g. [1]. The
analogous result is true for the pure SV model (1.3).

In financial practice, �LV(x, �) is determined such that the LV
model (1.2) yields the exact market prices for vanilla options, see
e.g. [3,6], and the parameters �, �, � are chosen such that the SV
model (1.3) reflects the market dynamics of the underlying asset,

http://dx.doi.org/10.1016/j.jocs.2017.02.004
1877-7503/© 2017 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2017.02.004
dx.doi.org/10.1016/j.jocs.2017.02.004
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:maarten.wyns@uantwerpen.be
mailto:karel.inthout@uantwerpen.be
dx.doi.org/10.1016/j.jocs.2017.02.004


Please cite this article in press as: M.  Wyns, K.J. in ’t Hout, An adjoint method for the exact calibration of stochastic local volatility
models, J. Comput. Sci. (2017), http://dx.doi.org/10.1016/j.jocs.2017.02.004

ARTICLE IN PRESSG Model
JOCS-614; No. of Pages 13

2 M. Wyns, K.J. in ’t Hout / Journal of Computational Science xxx (2017) xxx–xxx

see e.g. [29]. Next, the leverage function �SLV is calibrated such that
the SLV model yields the exact market prices for European call and
put options. In the literature, no closed-form analytical relationship
appears to be available between the leverage function and the fair
value of vanilla options within the SLV model. Accordingly, in finan-
cial practice the leverage function is calibrated by making use of a
relationship between the SLV model and the LV model. It is well-
known, see e.g. [9,28], that these models yield the same marginal
distribution for the exchange rate S� , and hence always define
the same fair value for vanilla options, if the leverage function
�SLV(x, �) satisfies

�2
LV (x, �)= E[�2

SLV (X�, �) 2(V�)|X�= x]= �2
SLV (x, �)E[ 2(V�)|X�=x],

(1.4)

for all x ∈ R, � ≥ 0. The latter conditional expectation can be writ-
ten as

E[ 2(V�)|X� = x] =
∫ ∞

−∞ 
2(v)p(x, v, �; X0, V0)dv∫ ∞

−∞ p(x, v, �; X0, V0)dv
, (1.5)

where p(x, v, �; X0, V0) denotes the joint density of (X� , V�) given by
the SLV model. Since the LV function is determined such that the LV
model yields exactly the observed market prices for vanilla options,
the SLV model will also exactly define the same fair value when-
ever one is able to determine the conditional expectation above
and defines the leverage function by (1.4). This conditional expec-
tation itself depends on �SLV(x, �), however, and determining it is a
highly non-trivial task. Recently, a variety of numerical techniques,
see e.g. [4,8,11,25,31], has been proposed in order to approximate
this conditional expectation and to approximate the appropriate
leverage function.

The numerical techniques presented in the references above
do not take into account explicitly that, even if the LV function is
known analytically, it is often not possible to determine exactly
the corresponding fair value of vanilla options. Even within the LV
model one relies on numerical methods in order to approximate
the fair option values. A common approach consists of numerically
solving the corresponding backward partial differential equation
(PDE) by for example finite difference or finite volume methods,
see e.g. [30]. When calibrating the SLV model to the LV model, the
best result one can thus aim for is that the numerical approxima-
tion of the fair value of vanilla options is the same for both models
whenever similar numerical valuation methods are used.

In this paper, we assume that the fair option value (within the
LV model, resp. SLV model) is approximated through numerically
solving the backward PDE (corresponding to the LV model, resp.
SLV model) by standard finite difference or finite volume meth-
ods. Given such a spatial discretization for the backward PDE,
an adjoint spatial discretization will be introduced for the corre-
sponding forward PDE. This adjoint spatial discretization has the
important property that it always defines exactly the same approxi-
mation for the fair value of non-path-dependent European options
as the approximation given by the discretization of the backward
equation. Moreover, if similar spatial discretizations are used for
the backward PDE associated with the LV model and the backward
PDE associated with the SLV model, then their adjoint spatial dis-
cretizations can be employed to create an exact match between the
approximations for the fair value of vanilla options within the LV model
and the SLV model.

The main contributions of this article can be visualized in the
following scheme:

Here relationship (�) can only be achieved if similar discreti-
zations are used for the backward PDEs stemming from the LV and
SLV models.

An outline of the rest of our paper is as follows.
In Section 2 a relationship between the forward PDE and back-

ward PDE is introduced, both for the case of the SLV model as for
the case of the LV model.

In Section 3 this relationship is preserved at the semidiscrete
level: given a spatial discretization of the backward PDE, an adjoint
spatial discretization for the forward PDE is defined such that both
discretizations yield identical approximations for the fair value of
non-path-dependent European options.

In Section 4 an actual spatial discretization, using second-order
central finite difference schemes, is constructed for the backward
PDE stemming from the SLV model and subsequently the corre-
sponding adjoint spatial discretization is stated.

The main result of the paper is derived in Section 5. It is shown
that, under some assumptions, the adjoint spatial discretization can
be employed to obtain an expression for the leverage function such
that the approximation of the fair value of vanilla options is the
same for the LV and SLV models. In order to effectively use this
expression, one has to solve a large system of non-linear ordinary
differential equations (ODEs).

In Section 6 an Alternating Direction Implicit (ADI) temporal
discretization scheme is applied to increase the computational effi-
ciency in the numerical solution of this ODE system and in Section 7
an iteration procedure is described for handling the non-linearity.

In Section 8 ample numerical experiments are presented to illus-
trate the performance of the obtained SLV calibration procedure.

The final Section 9 gives concluding remarks.

2. Relationship between the forward and the backward
Kolmogorov equation

Consider a European-style option with maturity T and payoff
u0. Denote by u(x, v, t) the non-discounted fair value of the option
under the SLV model (1.1) at time to maturity t, that is at time level
� = T − t, if S� = S0 exp(x) and V� = v. It is well-known, see e.g. [4],
that the function u satisfies the backward Kolmogorov equation

∂
∂t
u = 1

2
�2
SLV (x, T − t) 2(v)

∂2

∂x2
u + ���SLV (x, T − t) (v)v˛

∂2

∂x∂v
u

+ 1
2
�2v2˛ ∂

2

∂v2
u + (rd − rf − 1

2
�2
SLV (x, T − t) 2(v))

∂
∂x
u

+ �(� − v)
∂
∂v
u, (2.1)

for x, v ∈ R, 0 < t ≤ T. At maturity, i.e. at time level � = T, the initial
condition u(x, v, 0) is defined by the payoff u0 of the option. By
solving PDE (2.1), the fair value e−rdTu(X0, V0, T) of the option under
the SLV model can be determined at the spot, i.e. at � = 0. For strictly
positive values of the parameter ˛, the process V� is non-negative
and the spatial domain in the v-direction reduces to v ≥ 0.

If the option under consideration is non-path-dependent, then
the payoff u0 is only a function of (XT, VT), the initial condition
is given by u(x, v, 0) = u0(x, v) and the non-discounted fair value
u(x, v, t) of the option can be written as

u(x, v, t) = E[u0(XT , VT )|XT−t = x, VT−t = v],
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