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a  b  s  t  r  a  c  t

The  calibration  of  a  local volatility  models  to a  given  set of option  prices  is  a classical  problem  of math-
ematical  finance.  It was  considered  in multiple  papers  where  various  solutions  were  proposed.  In this
paper  an extension  of the  approach  proposed  in  Lipton,  Sepp 2011  is  developed  by (i)  replacing  a  piece-
wise  constant  local  variance  construction  with  a piecewise  linear  one,  and (ii) allowing  non-zero  interest
rates  and  dividend  yields.  Our  approach  remains  analytically  tractable;  it  combines  the  Laplace  transform
in time  with  an  analytical  solution  of the  resulting  spatial  equations  in  terms  of Kummer’s  degenerate
hypergeometric  functions.

©  2017  Elsevier  B.V.  All  rights  reserved.

The local volatility model introduced by [8,7] is a classical model
of mathematical finance. The calibration of the local volatility (LV)
surface to the market data, representing either prices of European
options or the corresponding implied volatilities for a given set of
strikes and maturities, drew a lot of attention over the past two
decades. Various approaches to solving this important problem
were proposed, see, e.g., [3,19,13] and references therein. Below,
we refer to [19] as LS2011 for the sake of brevity.1

There are two main approaches to solving the calibration prob-
lem. The first approach attempts to construct a continuous implied
volatility (IV) surface matching the market quotes by using either
some parametric or non-parametric regression, and then gen-
erates the corresponding LV surface via the well-known Dupire
formula, see, e.g., [13] and references therein. To be practically use-
ful, this construction should guarantee no arbitrage for all strikes
and maturities, which is a serious challenge for any model based
on interpolation. If the no-arbitrage condition is satisfied, then the
LV surface can be calculated using (2) below, which is equivalent
to, but more convenient than, the original Dupire formula. The sec-
ond approach relies on the direct solution of the Dupire equation
using either analytical or numerical methods. The advantage of this
approach is that it guarantees no-arbitrage. However, the problem
of the direct solution can be ill-posed, [4], and is rather computa-
tionally expensive.

∗ Corresponding author.
E-mail address: itkin@chem.ucla.edu (A. Itkin).

1 We emphasize that the solution proposed in [3] is static in nature, while the
solution developed in LS2011 is fully dynamic.

An additional difficulty with both approaches is that the calibra-
tion algorithm has to be fast in order to be practically useful. On the
one hand, analytical or numerical solutions of the Dupire equation
are naturally numerically expensive. On the other hand, building a
no-arbitrage IV surface could also be surprisingly numerically chal-
lenging, because it requires solving a rather involved constrained
optimization problem, see [13]. An additional complication arises
from the fact that in the wings the implied variance surface should
be at most linear in the normalized strike [15].

In this paper we  extend the approach proposed in LS2011, which
is based on the direct solution of the transformed Dupire equation.
In LS2011 a piecewise constant LV surface is chosen, and an efficient
semi-analytical method for calibrating this surface to the sparse
market data is proposed. However, one can argue that ideally the
LV function should be continuous in the log-strike space. Below we
demonstrate how to extend LS2011 approach by assuming that the
local variance is piecewise linear in the log-strike space, so that the
corresponding LV surface is continuous in the strike direction (but
not in the time direction). While derivatives of the LV function with
respect to strike have discontinuities, the option prices, deltas and
gammas are continuous. This is to compare with LS2011 where the
option prices and deltas are continuous while the option gammas
are discontinuous. We also allow for non-zero interest rates and
proportional dividends.

The rest of the paper is organized as follows. Section 1 introduces
the Dupire equation and discusses a general approach to construct-
ing the LV surface. Section 2 considers all necessary steps for solving
the Dupire equation. Section 3 introduces a no-arbitrage interpola-
tion of the source term, which naturally appears when the Laplace
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transform in time is used, and shows that using this interpolation
all the integrals containing this source term can be obtained in a
closed form. Section 4 considers a special case when the slope of the
local variance on some interval is small, so the linear local variance
function on this interval becomes flat. Section 5 discusses various
asymptotic results which are useful for constructing the general
solution of the Dupire equation. Section 6 is devoted to the cali-
bration of the model and also describes how to get an educated
initial guess for the optimizer. Since computing the inverse Laplace
transform could be expensive for small time intervals, Section 7
describes an asymptotic solution obtained in this limit in [11] and
shows how to use it for our purposes. Section 8 describes numerical
results for a particular set of market data. The final section con-
cludes. Some additional proofs and derivations are given in two
appendices.

1. Local volatility surface

As a general building block for constructing the local volatility
surface we consider Dupire’s (forward) equation for the Put option
price P which is a function of the strike price K and the time to matu-
rity T [8]. We assume that the underlying stock process St under
the risk neutral measure is governed by the following stochastic
differential equation

dSt = (r − q)Stdt + �(St, t)StdWt, S0 = S,

where r ≥ 0 is a constant risk free rate, q ≥ 0 is a constant continuous
dividend yield, � is a given local volatility function, and Wt is the
standard Brownian motion. The Dupire equation for the Put P(K, T)
reads [9]

PT (K, T) =
{

1
2
�2(K, T)K2 ∂

2

∂K2
− (r − q)K

∂
K

− q

}
P(K, T), (1)

(K, T) ∈ (0,  ∞)  × [0,  ∞),

subject to the initial and boundary conditions

P(K, 0) = (K − S0)+,

P(0, T) = 0, P(K, T)K↑∞ = KD, D = e−rT ,

where S0 = St|t=0, and D is the discount factor.
If the market quotes for P(K, T) are known for all K, T, then the LV

function �(K, T) can be uniquely determined everywhere by invert-
ing (1).2 However, in practice, the known set of market quotes is a
discrete set of pairs (Ki, Tj), i = 1, . . .,  nj, j = 1, . . .,  M,  where nj is the
total number of known quotes for the maturity Tj, which obviously
does not cover all K, T. So the form of �(K, T) remains unknown.

In order to address this issue, it is customary to choose a func-
tional form of �(K, T) for the corresponding time slice. For instance,
in LS2011 �(K, T) is assumed to be a piecewise constant function of
K, T. The authors propose a general methodology of solving (1) for
their chosen explicit form of �(K, T) by using the Carson–Laplace
transform in time and Green’s function method in space. This opens
the door for using a version of the least-square method for the cali-
bration routine. Of course, by construction, it makes the whole local
volatility surface discontinuous at the boundaries of the tiles, and
flat in the wings. While the former feature, in itself, is not neces-
sarily an issue, but should be avoided if possible, the latter feature
is somewhat more troubling, since, it is shown in [6,12], that the
asymptotic behavior of the local variance is linear in the log strike

2 If the Call option market prices are given for some strikes and maturities, we
can  use Call-Put parity in order to convert them to Put prices, since for calibration
we  usually use vanilla European option prices.

at both K → ∞ and K → 0. While the result for K → 0 is shown to be
true at least for the Heston and Stein–Stein models, the result for
K → ∞ directly follows from Lee’s moment formula for the implied
variance vI , [15], and the representation of �2 via the total implied
variance w = vIT [17,10]

wL ≡ �2(T, K)T = T∂Tw(
1 − X∂Xw

2w

)2
− (∂Xw)2

4

(
1
w + 1

4

)
+ ∂2

Xw
2

, (2)

where w = w(X, T), X = log K/F and F = Se(r−q)T is the stock forward
price. Therefore, having a flat local volatility deep in the wings
should be avoided if possible.

That is why, in this paper, we  consider a continuous, piecewise
linear local variance v = �2(X, T) in the spatial variable X for a fixed
T = const. This allows us to match the asymptotic behavior of v in the
wings as well as build the whole surface which is much smoother
than in the piecewise constant case. Also, in LS2011 the interest
rates and dividends are assumed to be zero, while here we take
them into account.

2. Solution of Dupire’s equation

Introducing a new dependent variable

B(X, T) = e−X/2(KD − P(X, T))/Q, Q = Se−qT ,

which is a scaled covered Put, the problem in (1) can be re-written
as follows

BT − 1
2

vBXX + 1
8
vB = 0, B(X, 0) = K − (K − S)+

S
e−X/2

= e−X/21X>0 + eX/21X≤0, B(X, T)X↓−∞ = 0, B(X, T)X↑∞ = 0,

(X, T) ∈ (−∞, ∞)  × [0,  ∞). (3)

A similar transformation is used in [18] in order to solve the
backward Black–Scholes equation. Suppose that there are option
price quotes (at least for one strike) for M different maturities T1, . . .,
TM.3 Also suppose that for each Tj the market quotes are provided
at Xi, i = 1, . . .,  nj.4 Then the corresponding continuous piecewise
linear local variance function vj(X)5 on the interval [Xi, Xi+1] reads

vj,i(X) = v0
j,i + v1

j,iX, (4)

where we use the super-index 0 to denote a level v0, and the super-
index 1 to denote a slope v1. Subindex i = 0 in v0

j,0, v1
j,0 corresponds

to the interval (−∞, X1]. Since vj(X) is continuous, we have

v0
j,i + v1

j,iXi+1 = v0
j,i+1 + v1

j,i+1Xi+1, i = 0, . . .,  nj − 1. (5)

The first derivative of vj(X) experiences a jump at the points Xi, i ∈
Z ∩ [1,  nj].

Further, assume that v(X, T) is a piecewise constant function of
time, i.e. v0

j,i
, v1
j,i

do not depend on T on the intervals [Tj, Tj+1), j ∈ [0,
M − 1], and jump to new values at the points Tj, j ∈ Z ∩ [1,  M]. In
the original independent variables K, T this condition implies that

v(Ki, T) ≡ vj,i = v0
j,i + v1

j,i

[
log(Ki/S)  − (r − q)T

]
, T ∈ [Tj, Tj+1),

i.e. that the local variance is a (discontinuous) piecewise linear func-
tion of time T. In other words, in the original log-variables (log K, T)
the function v(log K, T) is piecewise linear in both variables, while

3 We assume the maturities are sorted in the increasing order.
4 The strikes also are assumed to be sorted in the increasing order.
5 Here in the notation we  drop off the dependence of v on T since T is given, and

hopefully it does not bring any confusion.
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