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a  b  s  t r  a  c  t

The  paper  presents  a theoretical  analysis  of  a  simple  phenotypic  evolutionary  algorithm  running  with
the  fitness  proportional  selection  and  the Gaussian  mutation.  The  space  of population  states  approach  is
applied  to analyze  dynamics  of small  populations  evolving  in an  unconstrained  one-dimensional  search
space.  The  approach  facilitates  a study  of a  global  behavior  of evolving  populations  from  a  macroscopic
point  of  view.  Expected  trajectories  of  population  states  are  regarded  in  landscapes  of  various  types
of  fitness  functions:  unimodal  and  multimodal,  symmetrical  and  asymmetrical.  Phenomena  of rapid
unification  of  initially  diversified  populations  and  diversification  of  initially  homogeneous  populations
followed  by  a movement  of  a cluster-like  population  towards  the  neighborhood  of  an  optimum,  observed
previously  for two-element  populations,  were  confirmed.  Studies  of  a dynamical  system  generated  by
the expected  states  revealed  period-doubling  bifurcations  and  chaotic  behavior  of the  system  which
appear  for  particular  values  of a  mutation  strength  parameter  and  specific  fitness  functions.  A time to
convergence  to  the steady  state,  as an  essential  indicator  of optimization  properties  of  the  process,  was
also  analyzed.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Biologically inspired modern heuristics have become highly
popular optimization methods mainly due to their versatility and
simplicity of use. Although evolutionary algorithms have thou-
sands of real-life applications, the literature devoted to theoretical
analysis of these methods is sparse. Because of their complex,
non-deterministic nature, populational structure and multitude
of versions, theoretical studies of those methods are complicated
and existing results are limited to specific cases of evolutionary
operators, population sizes or fitness functions. Early successful
approaches in theoretical analysis of evolutionary algorithms used
Markov chain models [1,2], or dynamical systems theory to study
the system generated by infinite populations with a binary cod-
ing [3]. In these paradigms, an asymptotic behavior of populations
or expected population trajectories (fixed points and their stability)
were analyzed. Recently, there have been observed major improve-
ments in the theoretical understanding of evolutionary algorithms
and appearance of new techniques such as the population drift
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[4], artificial fitness levels [5,6], the family tree [7], branching pro-
cesses [8] and some others. These techniques allow researchers
to determine lower and upper bounds on evolutionary algorithms
runtime. The results are obtained mainly for the simple binary cod-
ing algorithms (i.e., (1+1)EA) and simple fitness functions such as
onemax or linear functions. Some of the results were generalized
to populational algorithms [6]. Theoretical analyses of finite small
populations with real-coded individuals are particularly scarce and
focus mainly on evolution strategies [9,10].

In this paper another approach, based on studying evolution in a
space of population states, is presented [11,12]. The state describes
a population as a whole. Regarding a population not as a collec-
tion of individuals but rather as a unity allows one to consider
evolution in terms of macro-evolution models for which proba-
bility distributions and expected states can be calculated and their
trajectories studied. Unfortunately, an exact (analytic) analysis is
possible only in the case of two-element populations and one-
dimensional search space, where trajectories of expected states
can be accurately calculated. The problem becomes even more
complicated when the population size increases and formulas for
expected states, calculated using the presented technique, can only
be approximated numerically [13,14]. Since two-element popu-
lations, as the smallest possible ones, may display very unique
behavior, it was compelling to learn whether small but larger than
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two-individual populations behave similarly or not. With the use
of the Gaussian function approximation, we study the evolution of
population states for three-, four- and five-element populations.
The dynamics of transient behavior and convergence to steady
states is analyzed for various fitness functions. The research is
extended with the examination of a dynamical system generated by
the process, keeping trace over its asymptotic behavior (which may
be chaotic in some situations) and time to convergence to the steady
states. It appears that presented results show behavior qualitatively
similar to that of two-element populations.

The paper is organized as follows. In Section 2 preliminaries
describing states of a space approach and calculating expected
states are presented. The section is supplemented with a descrip-
tion of fitness functions used in the research. In Section 3
trajectories of expected states and analytical calculations of the
expected states for initially homogeneous small populations are
described. An analysis of dynamics of small populations evolving
in different landscapes of fitness functions is presented in Section
4. Results of dynamical system studies (asymptotic behavior and
time to convergence to the steady states) are given in Section 5.
In Section 6 remarks on possible model extensions are collected.
The paper is concluded in Section 7. Exact formulas for expected
states of two-element populations and approximated formulas for
three-element populations are collected in Appendix A.

2. Preliminaries

2.1. The model of evolution

A simple model of phenotypic evolution is regarded [15]. A pop-
ulation consist of m individuals: P = {x1, x2, . . .,  xm}. Each individual
is characterized by its type: n-dimensional real-valued vector of
traits xk = (xk,1, xk,2, . . .,  xk,n), k = 1, . . .,  m,  and its quality q(x): a fitness
function value for the type. The population evolves in an uncon-
strained n-dimensional space of types T = R

n, and new generations
of individuals are created by only two operators: the fitness propor-
tional selection and the Gaussian mutation. A probability density
function of the individual x in the (i + 1)st generation is given by

f i+1
T (x | Pi) =

m∑
k=1

˛(xik | Pi)g(x, xik), (1)

where ˛(xi
k

| Pi) is a probability of selection of individual xi
k

(for the

fitness proportional selection ˛(xi
k

| Pi) = q(xi
k
)/

∑m
j=1q(xi

j
)),

g(x, xi
k
) denotes a density of mutation of the kth indi-

vidual (for the Gaussian mutation g(x, xi
k
) = N(x; xi

k
, �) =

exp(−(x − xi
k
)
2
/2�2)/(�

√
2�)).

The presented model has only two parameters: population size
m and the standard deviation of mutation �, and introduces a sim-
ple generational evolutionary algorithm called evolutionary search
with soft selection [16]. Populations evolving according to the model
can effectively cross wide and deep saddles separating adaptive
peaks of multimodal fitness functions, which is crucial for global
optimization [16–18].

Due to the simplicity of the model, it was possible to exam-
ine its theoretical properties for two extreme cases: infinite [19]
and two-element [12] populations. This paper presents an advance-
ment of the latter case on still small but larger than two-element
populations.

2.2. The space of population states

Evolving populations can be modeled in two different ways:
in the space of types T where every individual can be considered
separately, or in the space of population states S where each point

indicates not a single individual but a whole population. The space
of population states has a more complicated structure than the
space T: (i) dimensionality of S depends on the population size
and is m times higher than dimensionality of T : dim(S) = n · m; (ii)
m! points in S represent exactly the same population with dif-
ferent permutation of individuals. As the dynamics of evolution
does not depend on ordering of individuals in a population, an
equivalence relation U has to be introduced to avoid this ambigu-
ity. The equivalence relation identifies all points corresponding
to permutations of individuals in a population. The space S with
defined U becomes a quotient space SU = S/U = R

m · n/U.  Despite
the described complications, the space of states approach allows
one to analyze theoretically the evolution of small populations in
one-dimensional search space, and therefore we restrict our studies
to such cases of n = 1 (dim(S) = m).

To carry out further analysis, a rule to determine one among all
population elements indistinguishable w.r.t. U must be determined.
In the paper, for one-dimensional search space, it is assumed that
the relation U ranks individuals within a population in a decreasing
order. A population is therefore represented as a state (point) s = (x1,
x2, . . .,  xm) in the quotient space, such that x1 ≥ x2 ≥ · · · ≥ xm. The
space is limited by a line x1 = x2 = · · · = xm indicating homogeneous
populations (for which the types of all individuals in a population
are equal), and called the identity line later on. A joint probability
density function of m-element population in S is given by a prod-
uct of m densities (1). In the quotient space SU, a “reflection” of
the density relative to the identity line takes place. The joint den-
sity becomes asymmetrical and is located in the right semi-plane
bounded by the line. The joint probability density function of the
population state in the (i + 1)st generation is given by

f i+1
SU

(s | si) = m!
m∏
j=1

f i+1
T (xj | si) = m!

m∏
j=1

m∑
k=1

˛(xik | si)g(xj, xik). (2)

The calculation of the probability of selection ˛(xi
k

| si) is usually
based on a fitness function, which is naturally defined in the space
of types T. In the space of population states, fitness of the whole
population is defined as the average fitness of all its individuals (as
it is often used in biological models). Thus, evolution in the space
of population states is defined by a sequence of states sj, j = 0, 1, . . .
describing a trajectory of the population in the landscape of average
fitness q̄(x).

2.3. Expected values of population state

Given an initial population state, the expected value of the next
population state can be calculated using a joint probability density
function (2) as

E
[
x• | si

]
=

∫ ∞

−∞

∫ x1

−∞
· · ·

∫ xm−1

−∞
x•f i+1
SU

(
s | si

)
dxm. . .dx1. (3)

Note that the limits of integration of inner integrals do not range
from −∞ to +∞ but the upper limits are constrained since the den-
sity is defined in the quotient space SU. It causes some difficulties
in calculating integrals and exact formulas for the expectations can
be derived only for two-element populations [11,12]. For three-
element populations, formulas for expected coordinates are given
but they require numerical evaluation of singular integrals (cf.
Appendix A) [13,14].

Besides that, we  developed an efficient and numerically stable
procedure to calculate expected states of small populations. The
basic idea of the procedure is to replace one-dimensional Gaussian
distribution of mutation N

(
xj; xi

k
, �

)
by its polynomial approx-

imation, such that distributions for given � and xi
k

are derived
from the standard normal distribution approximated by piecewise-
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