
Journal of Computational Science 16 (2016) 59–64

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Multilevel neuronal architecture to resolve classification problems
with large training sets: Parallelization of the training process

Francisco Javier Martínez Lópeza, José Antonio Torres Arriazaa,
Sergio Martínez Puertasb,∗, María Mercedes Peralta Lópeza

a Computer Department, University of Almería, Carretera de Sacramento S/N, La Cañada de San Urbano, 04120 Almería, Spain
b Math Department, University of Almería, Carretera de Sacramento S/N, La Cañada de San Urbano, 04120 Almería, Spain

a r t i c l e i n f o

Article history:
Received 27 September 2015
Received in revised form 18 January 2016
Accepted 3 April 2016
Available online 30 April 2016

Keywords:
Artificial neural networks
Radial basis function networks
Multilevel neural networks
CUDA
Parallelization

a b s t r a c t

The value of radial base function networks (RBF) has been fully demonstrated and their application in a
wide number of scientific fields is undisputed. A fundamental aspect of this tool focusses on the training
process, which determines both the efficiency (success or “hit rat” in the subsequent classification) and
the overall performance (runtime), since the RBF training phase is the most expensive phase in terms of
time.

There is abundant literature on studies to improve these aspects, in which all the training techniques
proposed are classified either as iterative techniques, with very short execution times for the training pro-
cess, or as the traditional exact techniques, which excel in their high rates of accuracy in the classification.

In our field of study we require the smallest error possible in the classification process, and for this
reason, our research opts for exact techniques, while we also work to improve the high latencies in the
training process.

In a previous study, we proposed a pseudo-exact technique with which we improved the training
process by an average of 99.1638177% using RBF-SOM architecture. In the present study we exploit one
characteristic of this architecture, namely the possibility of parallelization of the training process.

Accordingly, our article proposes a RBF-SOM structure which, thanks to CUDA, parallelizes the training
process. This we will denote as CUDA-RBF-SOM architecture.

© 2016 Elsevier B.V. All rights reserved.

1. State of the art: radial base function (RBF) networks

Radial basis function (RBF) networks are very useful to resolve
problems where knowledge is scarce, fitting non-adjustable func-
tions using statistical procedures and, in some cases, of conflicting
knowledge. RBFs were introduced in the literature by Broomhead
and Lowe [3] but it was Poggio and Girosi [30] who later offered
the technique that allows a RBF the possibility of generalizing the
solution of a problem.

According to [7], these “mathematical models developed to
emulate the human brain” possess great computational power,
which derives from their structure of distributed parallel comput-
ing. This structure enables the resolution of problems that would
demand large amounts of time using “classic” computers. As a

∗ Corresponding author.
E-mail addresses: fml199@ual.es (F.J. Martínez López), jtorres@ual.es

(J.A. Torres Arriaza), spuertas@ual.es (S. Martínez Puertas), mperalta@ual.es
(M.M. Peralta López).

result, they have other properties that make them particularly
attractive for solving many practical problems [16,44,17], includ-
ing:

• They are non-linear distributed systems.
• They are fault tolerant systems.
• Adaptability: They have the capacity to modify the parameters on

which their operation depends according to the changes that are
produced in their work environment.

• They establish nonlinear relationships between data, since they
do not have to meet the conditions of linearity, Gaussianity or
stationarity [31].

• They admit the possibility of implementation in VLSI [26,25,27].

According to [10], thanks to these characteristics, they can be
applied to a variety of fields of knowledge. The most notable of
these are:

• Classification: With applications in medicine, for example, in
the diagnosis of cardiopathology [18,9]; in pharmacy, for

http://dx.doi.org/10.1016/j.jocs.2016.04.002
1877-7503/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2016.04.002
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2016.04.002&domain=pdf
mailto:fml199@ual.es
mailto:jtorres@ual.es
mailto:spuertas@ual.es
mailto:mperalta@ual.es
dx.doi.org/10.1016/j.jocs.2016.04.002

60 F.J. Martínez López et al. / Journal of Computational Science 16 (2016) 59–64

example, in the prediction of intoxication risk from digoxin [35];
signal processing, for example, in the equalization of communica-
tions channels, image pattern recognition and voice recognition
[13,8,40,32,4,41,5,6]; and in economics, for example, in the con-
cession of credit or determination of risk of bank failure.

• Modeling: With application in medicine, for example, in the pre-
vention of cardiac degenerative diseases [1]; in pharmacy, for
example, in the prediction of the concentration of gentamycin
[11]; in signal processing, for example, in active noise elimination
[36]; in economics, for example, in the prediction of electric-
ity costs [12,20]; in environmental studies, for example, in the
prediction of global temperature changes [28] or in automatic
recognition of ocean structures [37]; and in robot behavior [19].

1.1. Training algorithm for RBFs

Mathematically, the training process of an RBF is defined by:
In a set of m elements that belongs to a training set �Em×n =

{e1, e2, . . ., em} (with n characteristics per individual), and where
�W = {w1, w2, . . ., wm} are the weights of the neurons that comprise

the network, the expression on which training of the RBF is based
is:

rbf (�x) =
m∑

i=1

wi · ϕi(‖�ei − �x‖), (1)

where ϕi is the radial base function (Gaussian).
If we express this as a matrix we have [15]:⎛

⎜⎜⎝
ϕ1(�e1) · · · ϕ1(�em)

...
. . .

...

ϕm(�e1) · · · ϕm(�em)

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎝

w1

...

wm

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

y1

...

ym

⎞
⎟⎟⎠ (2)

Thus, to obtain the unknown �w (which is what the training stage
consists of), the expression would be:⎛
⎜⎜⎝

w1

...

wm

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ϕ1(�e1) · · · ϕ1(�em)

...
. . .

...

ϕm(�e1) · · · ϕm(�em)

⎞
⎟⎟⎠

−1

×

⎛
⎜⎜⎝

y1

...

ym

⎞
⎟⎟⎠ (3)

1.2. Main drawback: complexity of the training process

The main problem of RBFs stems from the costly training process
in terms of time.

This training cost is mainly due to the computational require-
ment of its two principal operations [2,42]:

• Inverse of a m × m matrix: order of complexity O(n3).
• Multiplication of two matrices: order of complexity O(n3).

Other procedures exist that train the RBF using iterative tech-
niques [29], which calculate the centroids of the kernel functions
and create a RBF network with fewer RBF functions than the train-
ing set.

Nevertheless, these methods entail a significant simplification
when the training sets are very large and they generate RBF
networks that, in some cases, do not fit the problem with the
required precision [38]. Furthermore, in [38] we compared the
training time of the architecture proposed in [24] with the times of
the classic training procedures, including iterative techniques and
we conclude that the proposed architecture in [24] provides better
execution times.

For all this reason, in our current piece of research, we have
opted for exact techniques.

2. First improvement: subdivision of the training set using
multilevel RBF-SOM neural architecture.

Recently, there are several techniques that employ neural
architecture based on SOMs and radial basis function networks
[22,23,39,43]. In [24], we proposed an architecture defined by a
duo 〈{RBFi}, {Ci}〉, where {RBFi} is a set of RBFs, each of which is
applied on the set of the inputs space, and {Ci} are the reference
vectors of a SOM [21] (serially operating multipliers). These vec-
tors Ci serve as activators of the RBFs that must be used for a given
entry (Fig. 1).

2.1. Training algorithm of the RBF-SOM architecture.

1. Make an initial random partition of the training set into N groups:

⎛
⎜⎜⎝

e1,1 · · · e1,t

...
. . .

...

ew,1 · · · ew,t

⎞
⎟⎟⎠ −→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

e1,1 · · · e1,t

...
. . .

...

ex,1 · · · ex,t

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ex+1,1 · · · ex+1,t

...
. . .

...

ey,1 · · · ey,t

⎞
⎟⎟⎠

...⎛
⎜⎜⎝

eh+1,1 · · · eh+1,t

...
. . .

...

ew,1 · · · ew,t

⎞
⎟⎟⎠

(4)

The reason for this (using a first partition at random and not
based on any statistical procedure) is due to our efforts to reduce
the computational requirements.

2. Apply the SOM to each of the training subsets.
(In our case, we used a hexagonal topology of p rows and k

columns.)
3. From step 2, we are interested in the p * k centroids of each of

the SOMs.

⎛
⎜⎜⎝

e1,1 · · · e1,t

...
. . .

...

ex,1 · · · ex,t

⎞
⎟⎟⎠ −→ p ∗ k centroids

⎛
⎜⎜⎝

ex+1,1 · · · ex+1,t

...
. . .

...

ey,1 · · · ey,t

⎞
⎟⎟⎠ −→ p ∗ k centroids

...
...

...⎛
⎜⎜⎝

eh+1,1 · · · eh+1,t

...
. . .

...

ew,t · · · ew,t

⎞
⎟⎟⎠ −→ p ∗ k centroids

(5)

After this step, we will have N * p * k centroids: �C =
{c1, c2, . . ., cN∗p∗k}

Download	English	Version:

https://daneshyari.com/en/article/6874521

Download	Persian	Version:

https://daneshyari.com/article/6874521

Daneshyari.com

https://daneshyari.com/en/article/6874521
https://daneshyari.com/article/6874521
https://daneshyari.com/

