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a  b  s  t  r  a  c  t

The  value  of radial  base  function  networks  (RBF)  has  been  fully  demonstrated  and  their application  in  a
wide  number  of scientific  fields  is undisputed.  A  fundamental  aspect  of  this  tool  focusses  on  the  training
process,  which  determines  both  the  efficiency  (success  or  “hit  rat” in  the subsequent  classification)  and
the overall  performance  (runtime),  since  the  RBF  training  phase  is  the most  expensive  phase  in terms  of
time.

There  is  abundant  literature  on  studies  to improve  these  aspects,  in  which  all  the  training  techniques
proposed  are  classified  either  as  iterative  techniques,  with  very  short  execution  times  for  the training  pro-
cess,  or as the  traditional  exact techniques,  which  excel  in  their  high  rates  of accuracy  in the  classification.

In  our  field  of  study  we require  the  smallest  error  possible  in  the  classification  process,  and  for this
reason,  our  research  opts  for exact  techniques,  while  we  also  work  to improve  the  high latencies  in the
training  process.

In  a  previous  study,  we  proposed  a pseudo-exact  technique  with  which  we improved  the  training
process  by  an  average  of  99.1638177%  using  RBF-SOM  architecture.  In the  present  study  we  exploit  one
characteristic  of this  architecture,  namely  the  possibility  of  parallelization  of  the  training  process.

Accordingly,  our article  proposes  a RBF-SOM  structure  which,  thanks  to  CUDA,  parallelizes  the  training
process.  This  we will  denote  as  CUDA-RBF-SOM  architecture.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. State of the art: radial base function (RBF) networks

Radial basis function (RBF) networks are very useful to resolve
problems where knowledge is scarce, fitting non-adjustable func-
tions using statistical procedures and, in some cases, of conflicting
knowledge. RBFs were introduced in the literature by Broomhead
and Lowe [3] but it was Poggio and Girosi [30] who later offered
the technique that allows a RBF the possibility of generalizing the
solution of a problem.

According to [7], these “mathematical models developed to
emulate the human brain” possess great computational power,
which derives from their structure of distributed parallel comput-
ing. This structure enables the resolution of problems that would
demand large amounts of time using “classic” computers. As a
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result, they have other properties that make them particularly
attractive for solving many practical problems [16,44,17], includ-
ing:

• They are non-linear distributed systems.
• They are fault tolerant systems.
• Adaptability:  They have the capacity to modify the parameters on

which their operation depends according to the changes that are
produced in their work environment.

• They establish nonlinear relationships between data, since they
do not have to meet the conditions of linearity, Gaussianity or
stationarity [31].

• They admit the possibility of implementation in VLSI [26,25,27].

According to [10], thanks to these characteristics, they can be
applied to a variety of fields of knowledge. The most notable of
these are:

• Classification: With applications in medicine, for example, in
the diagnosis of cardiopathology [18,9]; in pharmacy, for
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example, in the prediction of intoxication risk from digoxin [35];
signal processing, for example, in the equalization of communica-
tions channels, image pattern recognition and voice recognition
[13,8,40,32,4,41,5,6]; and in economics, for example, in the con-
cession of credit or determination of risk of bank failure.

• Modeling: With application in medicine, for example, in the pre-
vention of cardiac degenerative diseases [1]; in pharmacy, for
example, in the prediction of the concentration of gentamycin
[11]; in signal processing, for example, in active noise elimination
[36]; in economics, for example, in the prediction of electric-
ity costs [12,20]; in environmental studies, for example, in the
prediction of global temperature changes [28] or in automatic
recognition of ocean structures [37]; and in robot behavior [19].

1.1. Training algorithm for RBFs

Mathematically, the training process of an RBF is defined by:
In a set of m elements that belongs to a training set �Em×n =

{e1, e2, . . .,  em} (with n characteristics per individual), and where
�W = {w1, w2, . . .,  wm} are the weights of the neurons that comprise

the network, the expression on which training of the RBF is based
is:

rbf (�x) =
m∑

i=1

wi · ϕi(‖�ei − �x‖), (1)

where ϕi is the radial base function (Gaussian).
If we express this as a matrix we have [15]:⎛

⎜⎜⎝
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. . .
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Thus, to obtain the unknown �w (which is what the training stage
consists of), the expression would be:⎛
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1.2. Main drawback: complexity of the training process

The main problem of RBFs stems from the costly training process
in terms of time.

This training cost is mainly due to the computational require-
ment of its two principal operations [2,42]:

• Inverse of a m × m matrix: order of complexity O(n3).
• Multiplication of two matrices: order of complexity O(n3).

Other procedures exist that train the RBF using iterative tech-
niques [29], which calculate the centroids of the kernel functions
and create a RBF network with fewer RBF functions than the train-
ing set.

Nevertheless, these methods entail a significant simplification
when the training sets are very large and they generate RBF
networks that, in some cases, do not fit the problem with the
required precision [38]. Furthermore, in [38] we  compared the
training time of the architecture proposed in [24] with the times of
the classic training procedures, including iterative techniques and
we conclude that the proposed architecture in [24] provides better
execution times.

For all this reason, in our current piece of research, we have
opted for exact techniques.

2. First improvement: subdivision of the training set using
multilevel RBF-SOM neural architecture.

Recently, there are several techniques that employ neural
architecture based on SOMs and radial basis function networks
[22,23,39,43]. In [24], we proposed an architecture defined by a
duo 〈{RBFi}, {Ci}〉, where {RBFi} is a set of RBFs, each of which is
applied on the set of the inputs space, and {Ci} are the reference
vectors of a SOM [21] (serially operating multipliers). These vec-
tors Ci serve as activators of the RBFs that must be used for a given
entry (Fig. 1).

2.1. Training algorithm of the RBF-SOM architecture.

1. Make an initial random partition of the training set into N groups:
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(4)

The reason for this (using a first partition at random and not
based on any statistical procedure) is due to our efforts to reduce
the computational requirements.

2. Apply the SOM to each of the training subsets.
(In our case, we  used a hexagonal topology of p rows and k

columns.)
3. From step 2, we are interested in the p * k centroids of each of

the SOMs.
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After this step, we will have N * p * k centroids: �C =
{c1, c2, . . ., cN∗p∗k}
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