
Journal of Computational Science 16 (2016) 128–139

Contents lists available at ScienceDirect

Journal of Computational Science

j ourna l h om epage: www.elsev ier .com/ locate / jocs

Numeric tensor framework: Exploiting and extending Einstein
notation

Adam P. Harrison ∗, Dileepan Joseph
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada

a r t i c l e i n f o

Article history:
Received 5 December 2015
Received in revised form 27 April 2016
Accepted 7 May 2016
Available online 24 May 2016

Keywords:
Tensor algebra
Tensor computations
Tensor inversion
C++ classes
MATLAB classes

a b s t r a c t

The numeric tensor (NT) framework addresses and unifies a growing body of work on high-dimensional
algebra and software for technical computing. Its NT algebra exploits and extends Einstein notation, offer-
ing unmatched capabilities, including N-dimensional operators, associativity, commutativity, entrywise
products, and linear invertibility. High-performance C++ and MATLAB NT software allows practitioners
to directly program with NT algebra. The advantages of NT algebra are highlighted using the example of
canonical-polyadic (CP) tensor decomposition. Corresponding dense benchmarks demonstrate that the
NT software matches or surpasses leading competitors, i.e., the MATLAB Tensor Toolbox, NumPy, and
Blitz++, while supporting a more general set of arithmetic operations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Technical computing is a cornerstone of modern scientific prac-
tice. The wide use of matrix-vector (MV) algebra and the robustness
of MV computations, used to represent and manipulate linear map-
pings applied to vectors, are a major manifestation of technical
computing’s success.

Underscoring the MV paradigm’s integral role, the publication of
von Neumann and Goldstine’s 1947 paper [1], “Numerical Inverting
of Matrices of High Order”, is often credited as the starting point of
modern numerical analysis [2]. Since then, MV computations have
continued to mature, e.g., the widely influential LAPACK and BLAS
numerical libraries. In parallel with these computational advances,
practitioners have keenly expressed the desire for direct support of
algebra within their programming environments. As early as 1954,
Backus and Herrick predicted that eventually “a programmer might
not be considered too unreasonable if he were willing only to pro-
duce the formulas for the numerical solution of his problem” [3].
Arguably, the advent of operator-overloaded object-oriented pro-
gramming languages, e.g., C++, and very high-level languages for
technical computing, e.g., MATLAB, have come close to fulfilling this
vision, wedding MV algebra directly with MV computations.

∗ Corresponding author at: Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, Alberta, Canada.

E-mail addresses: adam.p.harrison@gmail.com (A.P. Harrison),
dil.joseph@ualberta.ca (D. Joseph).

The MV paradigm exemplifies the intimate partnership between
formalism and constructivism, i.e., algebra and software, in tech-
nical computing. The crosstalk between algebra and software is
so potent that Åhlander et al. advocate choosing mathematical
abstractions through the lens of software engineering consid-
erations [4]. Eriksson et al. echo this argument, asserting that
constructivism and formalism inform each other [5]. Illustrating
this, the Society for Industrial and Applied Mathematics has pub-
lished books reframing the Fast Fourier Transform [6] and graph
algorithms [7] using MV algebra, each emphasising that MV nota-
tion provides a powerful means to understand and develop these
respective algorithms. This interplay is bi-directional, e.g., efficient
sparse computations have paved the way for practical MV-based
graph techniques [7]. For these reasons, we use “technical comput-
ing framework” to describe a numeric algebra accompanied by a
body of mature software routines.

Despite the success of the MV paradigm, there exists a cross-
disciplinary need for operations upon high-dimensional data
that fall outside its natural purview. This has spurred work on
alternative algebras for high-dimensional data [12,8–11,13–20]
and on software supporting the algebra of such formalisms
[10,21–23,9,24–30]. These investigations are motivated by the
need to perform arithmetic upon high-dimensional data, to differ-
entiate expressions involving high-dimensional data, to execute or
invert high-dimensional linear mappings, to represent multilinear
or polynomial mappings, and/or to decompose high-dimensional
data. Yet, while much of the cited work meets specific demands
stemming from their application areas, their capabilities do not

http://dx.doi.org/10.1016/j.jocs.2016.05.004
1877-7503/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2016.05.004
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2016.05.004&domain=pdf
mailto:adam.p.harrison@gmail.com
mailto:dil.joseph@ualberta.ca
dx.doi.org/10.1016/j.jocs.2016.05.004

A.P. Harrison, D. Joseph / Journal of Computational Science 16 (2016) 128–139 129

often extend beyond those specific needs. This fracturing con-
tributes to the impression that this body of work requires distinct
sets of technical computing frameworks, which has a deleteri-
ous effect on knowledge translation and widespread use of these
advancements.

To combat this lack of universality, this paper argues that an
extended version of Einstein notation can serve as the foundation of
a comprehensive technical computing framework for high-degree
data1. We call this a numeric tensor (NT) framework, underscor-
ing that the focus is on numeric multi-index arrays invested with
a set of arithmetic operations. We identify key algebraic qualities
necessary toward a universal framework, which include N-degree
support, associativity, commutativity, entrywise products, and lin-
ear invertibility. To best satisfy these characteristics, we exploit and
extend Einstein notation to develop the NT algebra of this work.

An algebra for numeric high-degree data is orphaned without
effective supporting software. For this reason, we also introduce
fast and efficient NT software, embodied by C++ and MATLAB
libraries, called LibNT and NTToolbox, respectively. Mirroring the
MV paradigm’s capabilities, these libraries allow NT algebra to
be used directly within a programming environment. The soft-
ware employs a novel lattice data structure, which enables any
combination of inner, entrywise, and outer products, as well as cor-
responding inverses, across the indices of two NTs. Both libraries
rely on high-performance kernels and fully support any mixture
of dense and sparse NT data. This paper will restrict attention to
dense NTs, comparing the performance of LibNT and NTToolbox to
leading software solutions [10,21,22,31].

Section 2 begins by reviewing current efforts toward developing
high-degree algebras, making the case that an extended version of
Einstein notation is best suited to meet the requirements of this
wide-ranging body of work. Section 3 describes such a solution,
which is called NT algebra. This is followed by Section 4, which
outlines NT software designed to directly support the NT algebra.
Finally, Section 5 concludes the work.

2. Exploiting Einstein notation

Practitioners have introduced or advocated for various alge-
bras to perform arithmetic upon numeric high-degree data. These
researchers come from backgrounds that include numerical analy-
sis [9,24], computational chemistry [26–28], applied mathematics
[32], image processing [18], computer vision [33], systems and
control theory [16], signal processing [34–36], geodesy [37],
econometrics [38], database and information systems [39], psycho-
metrics [14], informatics [10,21,40], and statistics [19,20].

Kronecker algebra is a major player in such formalisms, furnish-
ing MV algebra with a tensor product and typically operating in
tandem with vectorising operations [43]. Practitioners have also
extended MV algebra with entrywise operations, e.g., the Hadamard
and Khatri-Rao products. Like Liu and Trenkler [13], we group these
entrywise matrix products together with Kronecker algebra, using
our own label of extended matrix/vector (EMV) algebra.

Other algebras depart more completely from MV formalism.
The n-mode product notation is a popular formalism often used in
tensor decomposition literature [8,34,40,44]. For core operations
in tensor decomposition, e.g., multiplying a tensor on all sides with
matrices, n-mode product notation supplies dedicated notation.

1 We use “degree” to describe the number of indices of an NT. Other possible
choices include “dimension” and “order”. Because “dimensionality” is widely used
to describe the number of scalar entries in an array, “dimension” is avoided for this
orthogonal purpose. Because “order” is frequently used to describe how non-zero
data is arranged in a sparse tensor, which is an important concept [21], this term is
also avoided.

Less-prevalent conventions exist to express general tensor-times-
tensor products [10,33,45], which rely on numerals to designate
which NT index is undergoing an inner product. We label this aug-
mented version n-mode+ notation.

Fields other than tensor decomposition have also introduced
algebras with similar characteristics. R-matrix notation [15], origi-
nating from geodesy, represents one prominent example. Predating
n-mode notation, its algebra relies on similar numerical designa-
tions. Suzuki and Shimizu’s array algebra [16], introduced within
systems and control, is another example with similar capabilities.

Einstein notation represents the final high-degree algebra.
Enjoying deep roots in physics [42], the notation can be grouped
within the larger category of index notations, which includes Tait’s
array algebra [17] and Antzoulatos and Sawchuck’s hypermatrix
algebra [18]. We outline many of its powerful conventions for
numeric calculations in Section 3’s discussion of NT algebra.

Table 1 outlines these high-degree algebras, which all embody
certain characteristics that have proven beneficial. We focus on
these characteristics in detail below. Based on this analysis, we
argue that Einstein notation can serve as the algebraic foundation
for a unifying high-degree technical computing framework.

2.1. N-degree support

MV algebra is unable to naturally represent N-degree linear
mappings and multilinear mappings outside of bilinear forms,
which has spurred the promotion of other numeric algebras. Ein-
stein notation, along with array algebra and n-mode+ notation, is
naturally able to represent data and mappings of arbitrary degree,
an obvious strength for high-degree algebras.

Opting to stay within the MV domain, EMV blurs the natural
boundaries of the MV paradigm by supporting certain multilinear
and N-degree linear mappings through flattening operations. How-
ever, flattening N-degree data requires settling on a lexicographic
order in the notation, which elevates a consideration normally
confined to software into the realm of algebra. This can create con-
fusion. For instance, the Kronecker product itself has two different
definitions, e.g., see Van Loan [41] and Regalia and Mitra [46]. Or
see Magnus [47] on the competing views on how to best lexico-
graphically lay out partial derivatives of vector or matrix-valued
functions. These issues magnify as the degree increases because
for N-degree data there are N! vectorising options.

Many authors [9,16–18,24,36,48] have explicitly made a case
against casting N-degree problems into the MV domain, describing
some of the requisite identities, rearrangements, and manipula-
tions as “troublesome” [16], “cumbersome” [18], and “awkward”
[9]. Even those articulating how MV algebra can be extended note
that the requisite complications can be avoided “if one is willing to
abandon matrix notation” [49]. Thus, for applications that express
mappings not naturally supported by MV algebra, there is an acute
need for algebras that can innately work with N-degree data and
mappings.

2.2. Associativity and commutativity

Einstein notation is unique in being completely associative
and commutative, imbuing the algebra with unrivalled abilities to
manipulate algebraic expressions. Authors have long recognised
the importance of these characteristics. For instance, associativity
is fundamental to the MV paradigm, as lacking it would be “unbear-
able” [50]. However, MV algebra is not commutative. This is often
highlighted by champions of Einstein notation, e.g., Papastavridis’
particularly pugnacious quote that “whatever cosmetic or aesthetic
advantages that [MV] notation may have, they are far outweighed
by the merciless straightjacket of noncommutativity” [42].

Download English Version:

https://daneshyari.com/en/article/6874530

Download Persian Version:

https://daneshyari.com/article/6874530

Daneshyari.com

https://daneshyari.com/en/article/6874530
https://daneshyari.com/article/6874530
https://daneshyari.com

