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a  b  s  t  r  a  c  t

This article  presents  a  framework  for a surrogate-based  stochastic  search  algorithm  for  multi-objective
and  constrained  black-box  optimization  where  the  objective  and  constraint  function  values  are  out-
puts  of  computationally  expensive  computer  simulations.  Unlike  many  other  approaches,  the  proposed
framework  is  not  population-based  and  handles  constraints  without  explicitly  using  a  penalty  function.
In  each  iteration,  the  algorithm  constructs  or updates  response  surface  models  or surrogate  models  of
the  objective  and  constraint  functions.  Then,  it generates  multiple  random  trial points  according  to some
probability  distribution  over the  search  space.  The  surrogate  models  for the  objective  and  constraint  func-
tions  are  then  used  to identify  the  trial points  that  are  predicted  to  be feasible  and  nondominated.  From
this  set  of  trial  points,  two criteria  are  used  to  select  the  next  sample  point  where  the  expensive  objective
and  constraint  functions  will be  evaluated.  These  criteria  are  the minimum  distance  of the  predicted
objective  vector  of  a trial  point  from  the  current  set  of  nondominated  objective  vectors  and  also  the  min-
imum  distance  of  the  trial point  from  previous  sample  points.  The  proposed  framework  is  implemented
using  radial  basis  function  (RBF)  surrogate  models  and  compared  with  alternative  methods,  including
NSGA-II  and Uniform  Random  Search  on  28  benchmark  test  problems.  The  numerical  results  indicate
that  the  proposed  method  is  promising  for  computationally  expensive  multi-objective  and  constrained
black-box  optimization.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

This article develops a framework for a surrogate-based stochas-
tic algorithm for multi-objective constrained optimization that can
be used for problems with computationally expensive black-box
objective and constraint functions. In these problems, the val-
ues of the objective and constraint functions for given settings
of the input variables are obtained via time-consuming com-
puter simulations that could take many hours per simulation.
Consequently, the total time spent on simulations completely dom-
inates the running time of a typical optimization algorithm on
these computationally expensive problems. These problems are
found in many engineering applications, particularly those involv-
ing finite element or computational fluid dynamics simulations
(e.g., Prieß et al. [1], Clees et al. [2], Bureerat and Srisomporn [3],
Husain et al. [4]).
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Specifically, this article proposes a class of algorithms for the
following multi-objective constrained optimization problem:

min F(x) = (f1(x), . . .,  fk(x))

s.t.

G(x) = (g1(x), . . .,  gm(x)) ≤ 0

� ≤ x ≤ u

(1)

Here, �, u ∈ Rd and the functions fi : Rd → R, i = 1, . . .,  k and
gj : Rd −→ R, j = 1, . . ., m are black-box in that their mathemat-
ical forms are not explicitly available and instead their values are
obtained via an expensive but deterministic simulation. Also, one
simulation for a given input vector x ∈ [�, u] yields the values of
all the components of F(x) and G(x). The region [�, u] defined
by the bounds is referred to as the search space for problem (1).
Moreover, the derivatives of the objective and constraint func-
tions are assumed to be unavailable. For simplicity, assume also
that there are no equality constraints and that the feasible region
D  := {x ∈ Rd : � ≤ x ≤ u, G(x) ≤ 0} has a nonempty interior. Fur-
thermore, assume that a feasible starting point is given, which

http://dx.doi.org/10.1016/j.jocs.2016.05.013
1877-7503/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2016.05.013
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2016.05.013&domain=pdf
mailto:rregis@sju.edu
dx.doi.org/10.1016/j.jocs.2016.05.013


R.G. Regis / Journal of Computational Science 16 (2016) 140–155 141

is not unreasonable since it is often the case that an engineer
knows of a feasible design to the problem and is simply looking
for an improved solution. For convenience, this problem will be
referred to as MCOP(F, G, [�, u]). Future work will deal with more
difficult cases not covered here, including optimization problems
with black-box equality constraints, the absence of feasible starting
points, and the presence of noise in the objective and/or constraint
functions.

The proposed framework for a stochastic algorithm for prob-
lem (1) dynamically updates response surface models or surrogate
models for each of the objective and constraint functions at the
beginning of each iteration. Then, it randomly generates multiple
trial points, called candidate points,  according to some probabil-
ity distribution (e.g., uniform random over the search space or
Gaussian centered at a current nondominated sample point). The
algorithm then uses the surrogate models for the constraint func-
tions to predict which candidate points will be feasible or have
the minimum number of constraint violations. From this set of
candidate points, the most promising point (or points if run in par-
allel) is identified according to multiple criteria such as predicted
non-domination rank according to the surrogates, distance from
previously evaluated points in the decision space, and distance
of the predicted objective vector from the current nondominated
objective vectors in the objective space. The expensive simula-
tion is then carried out only on this promising trial point. Unlike
other methods for constrained multi-objective optimization, the
proposed approach does not lump the constraints into a single
penalty function since this is not expected to be effective in the
computationally expensive setting. Moreover, it is not population-
based but it can be easily modified to generate multiple sample
points for parallel processing. The proposed framework, called
MOCS-RS (Multi-Objective Constrained Stochastic optimization using
Response Surfaces), is an extension to the multi-objective setting
of the ConstrLMSRS approach (Regis [5]) for constrained black-
box optimization, which was shown to work well on a large-scale
benchmark problem with 124 decision variables and 68 black-box
inequality constraints.

The proposed approach is implemented using Radial Basis Func-
tion (RBF) surrogates and compared with alternative methods,
including NSGA-II (Deb et al. [6]), Direct Multi Search (DMS) (Custó-
dio et al. [7]) and a random search algorithm for multi-objective
constrained optimization, on 28 benchmark test problems. The
numerical experiments show that the resulting method called
MOCS-RBF is very promising for multi-objective constrained black-
box optimization.

At present, relatively few surrogate-based algorithms have been
proposed for problems with multiple black-box objective functions
and inequality constraint functions. Hence, one important contri-
bution of the proposed framework is another approach for solving
these problems. Moreover, the approach in this paper differs from
that of others in that a framework is being proposed instead of
specific algorithms. This framework is meant to encompass vari-
ous types of surrogate models (including ensembles), probability
distributions that generate the candidate points, and criteria or
strategies for selecting the sample point from the set of candidate
points. This provides users with the freedom to explore schemes
within the framework that they think might be effective. Another
valuable contribution of this paper is an extensive numerical test
to compare implementations of MOCS-RBF with alternative meth-
ods. A majority of papers on surrogate-based optimization test the
proposed methods on only a handful of generally low-dimensional
problems while this paper uses 28 test problems with up to 15
decision variables, up to 5 objectives and up to 11 inequality con-
straints. Also, each algorithm being tested is run 30 times on each
problem. In addition to simply using the widely popular hyper-
volume metric, this paper uses data profiles [8] to compare how

well the nondominated objective vectors are spread out across the
approximate Pareto front. Hence, this paper presents more reli-
able numerical results that confirm that robustness of the specific
algorithms that this article proposes.

2. Preliminaries and notations

Before proceeding, a few terms need to be defined in the context
of multi-objective constrained optimization. Consider an MCOP(F,
G, [�, u]) of the form (1). This article employs some terminology
from standard texts in multi-objective optimization (e.g., Miettinen
[9]). Below are some basic terms. In the definitions below, D  is the
feasible region of problem (1).

Definition 2.1. A point x ∈ D  dominates another point y ∈ D,
written x ≺ y, if fi(x) ≤ fi(y) for all i = 1, . . .,  k and fj(x) < fj(y) for some
j.

Definition 2.2. A point x∗ ∈ D  is a (global) Pareto minimizer of F
over D  if �y  ∈ D  s.t. y ≺ x*. The Pareto set of F over D, denoted by X∗

F,D,
is the set of all global Pareto minimizers of F over D. The Pareto front
of F over D  is the image of the Pareto set under the mapping F, i.e.,
it is F(X∗

F,D) = {F(x∗) : x∗ ∈ X∗
F,D}.

Ideally, one would wish to determine the entire Pareto set and
Pareto front of F over D. However, for many practical problems,
the Pareto set and Pareto front are infinite sets, and so, one can
only hope to find a finite representative subset of these sets. In
practice, many algorithms strive to find a nondominated subset of
objective vectors, sometimes with no guarantee of obtaining any
Pareto optimal solutions. The solutions found can then be presented
to a decision maker who  might select one or a few nondominated
solutions for implementation.

Since this paper focuses on constrained multi-objective opti-
mization problems, it is necessary to extend the concept of
non-domination to the entire search space [�, u], including
infeasible points that satisfy the bounds. To do this, we first define
the concept of a constraint violation function.

Definition 2.3. Let [�, u] ⊆ Rd be the search space and let G(x)
be the constraint function for problem (1). Moreover, let D  = {x ∈
Rd : � ≤ x ≤ u, G(x) ≤ 0} be the feasible region of the problem. A
constraint violation function for G over [�, u] is a function V : [�, u] →
R+ satisfying the following conditions:

(i) V(x) = 0 for all x ∈ D;
(ii) V(x) > 0 for all x /∈ D; and

(iii) If G(x) ≤ G(y), then V(x) ≤ V(y).

A constraint violation function is a measure of the degree
of constraint violation of a point in the search space [�, u].
It is easy to verify that V(x) =

∑m
j=1[max{gj(x), 0}]q, where

q > 0, and V(x) =
∑m

j=1I([gj(x) > 0]), where I(·) is the indicator
function, are constraint violation functions for G over [�, u]. Com-
monly used examples are V(x) =

∑m
j=1[max{gj(x), 0}] and V(x) =∑m

j=1[max{gj(x), 0}]2. In fact, the NSGA-II code that is used in the
comparisons uses the former constraint violation function.

Next, the concept of domination is extended to all points in the
search space [�, u].

Definition 2.4. Consider the MCOP(F, G, [�, u]) in (1) with feasible
region D  and let V(x) be a constraint violation function for G over
[�, u]. A point x ∈ [�, u] dominates another point y ∈ [�, u], written
x ≺ y, if any one of the following conditions hold:

(a) x, y ∈ D  and fi(x) ≤ fi(y) for all i = 1, . . .,  k and fj(x) < fj(y) for some
j;
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