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a  b  s  t  r  a  c  t

Pore  networks  considering  variable  connectivity  and  geometrical  restrictions  among  voids  of  assorted
sizes  are  simulated  using  an  8-multicore  computing  system.  The  topology  of the  resulting  networks  is
visualized  in  terms  of the  sizes  and  connectivity  of  the  pores  through  color  graphics.  Results  allow  the
calculation  of  percolation  thresholds,  correlation  lengths  among  pores,  fractal  dimensions  of  percolation
clusters,  and  conditional  probabilities  among  connected  pore  sizes.  Besides,  it  is  possible  to  observe
disconnected  pore  islands  of different  sizes,  depending  on  the structural  correlation  among  pores.
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1. Introduction

Both natural and synthetic systems include the existence of a
good deal of different networks either physical or virtual. The struc-
tural characterization of these networks is crucial to determine
the application of the corresponding substrata. These applica-
tions include the separation of compounds by adsorption [1],
the immiscible displacement of liquids [2,3], the imbibition and
drainage of liquid phases [4], etc. In the case of our present inter-
est, real porous substrata are complex physical networks that can
be simulated by involving specific restraints. Previous studies have
designed virtual pore networks based on simple physical consid-
erations [5–8]. For instance, when pursuing the creation of a pore
network from the interconnection of sites (spherical cavities) by
means of cylindrical tubes (bonds), the key condition to fulfill is
that the size (i.e. the diameter) of the bond that is interconnecting
two neighboring cavities can never be larger than any of the sizes of
the two sites in question. However, other restrictions can still surge,
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especially when some kind of additional evidence (e.g. microscopic
visualization) is at hand. For example, mesoporous silicas with uni-
form pore sizes between 20 and 500 Å are synthesized in such a
way as to obtain pores with very precise geometries an regularly
arranged [9]. In this sense, an additional physical constraint could
be that two  adjacent (orthogonal) bonds (for simplicity, assumed
as hollow cylindrical capillaries) are not allowed to intercept each
other before meeting at the spherical cavity (site) to which these
capillaries are leading to [10–13]. In the same context, a further
parameter that has been subjected to scrutiny is the connectiv-
ity [14] (i.e. the mean number of bonds that are interconnecting
the sites of the network). These characteristics have not yet been
analyzed with respect to percolating and statistical properties.

The computing programs that our research group has devel-
oped so far, include Greedy and Monte Carlo algorithms [15,16]; in
these cases, a valid porous network (i.e. that fulfilling the pertinent
construction constraints) is eventually created; this is followed by
the application of additional and valid exchanges of void sizes in
order to achieve an isotropic configuration (i.e. that approximating
to the maximum configurational entropy) of the pore arrange-
ment. After accounting for the above observations, it seems that
the in silico creation of a real pore network would be such that
considers the incidence of physical restrictions. The contribution
of this paper aims to structurally characterize porous networks
endowed with geometrical restrictions and variable connectivity
among pore entities. This model allows to calculate percolation
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thresholds, while visualizing their corresponding paths. Besides,
the conditional probabilities of finding interconnected sites and
bonds of given sizes were numerically calculated. The scalabil-
ity of small to large pore arrangements was feasible through the
implementation of a parallel computing algorithm using a shared
memory multicore system.

This paper is organized as follows. Sections 2–4 describe the the-
oretical background in the following manner: Section 2 presents the
Dual Site-Bond Model (DSBM); Section 3 incorporates the concept
of geometrical restraints; and Section 4 deals with the treatment of
variable connectivity. Section 5 accounts the in silico parallel sim-
ulation of porous networks endowed with variable connectivity.
Section 6 presents the structural characterization of the simulated
pore networks, while Section 7 accounts for the computing results
found after constructing such kind of pore networks. Finally, Sec-
tion 8 outlines the conclusions and sets the perspectives.

2. The Dual Site-Bond Model (DSBM)

The structure of most real porous media is so irregular and
intricate that a rigorous geometric description of such arrange-
ments is frankly impossible to achieve. The number of pore entities
per unit mass that are inherent to a typical porous medium, is a
changeable quantity depending on the nature of the adsorbent. For
instance, the number of spherical cavities that are proper of a SBA-
16 material [17] can account as much as 1020 pores per gram of
material. In the case of SBA-15 solids [18] consisting of indepen-
dent (non-interconnected) cylindrical pores in hexagonal packing,
and assuming a mean pore length of 1 �m,  it is just necessary to
have 15 g of this material in order to account for a total length
equivalent to the distance of the earth to the sun. Nevertheless, for
appraising or modeling valid pore networks is necessary to develop
an appropriate statistical model, in which the following features
converge:

1. To allow the incorporation of all those relevant characteristics
that have been accounted for via careful experimental evidence.

2. To be simple enough as to grant the implementation of a rigorous
mathematical treatment with respect to the calculation of pore
network structural parameters.

3. To consider the principal textural characteristics of porous media
that mainly control the outcome of capillary phenomena, as for
instance adsorption, imbibition or intrusion.

4. The pore sizes are commonly distributed over a wide range of
values, typically from 1 to 1000 nm (colloidal size range), and
between 2 and 50 nm (mesoporous materials [19]). The throats
that are connecting cavities are usually either cylindrical or slit-
like shapes [18,20,21].

5. The mean number of throats that delimit a site in a pore network
is called the connectivity of the system. This parameter is linked
to the number of pathways or access routes among pores; the
efficiency of the displacement of a given fluid from a pore net-
work depends on this factor. From available evidence, it seems
that in sedimentary rocks the connectivity ranges from 2 to 15
[22].

6. The mean pore width, the specific surface area, the porosity, and
the permeability are determined from the first, second, third and
fourth moments of the pore-size distributions of sites and bonds.
In turn, the tortuosity of the porous medium is associated with
the connectivity of the pore network, while the site-bond size
ratio is related to the overlap existing between the site and bond
size distributions.

Some models which can fulfill the previous conditions are real
micromodels and virtual Dual Site-Bond Model (DSBM) structures.

The micromodels are real pore structures in which capillary pro-
cesses can be studied in the laboratory [23]. In contrast to this, the
DSBM can be developed numerically through the in silico construc-
tion of pore networks. In this last model, a physical description of
the porous medium is succinctly developed. Details of the DSBM
can be found in reference [24].

As mentioned previously, porous media can be described
adroitly by considering sites (antrae, cavities) and bonds (capillar-
ies, throats, passages), which inevitably alternate to form an
interconnected network. The connectivity C, is the mean number
of bonds meeting at a site. For simplicity, the size of each entity
is expressed by using only one quantity, R, defined as follows: for
sites, considered as hollow spheres, R is the radius of the sphere,
while for bonds, idealized as hollow cylinders open at both ends
(owing to their function of passages), R is the radius of the cylin-
der. A twofold (sites and bonds) size distribution is established by
means of the normalized size probability density functions, FS(RS)
and FB(RB), of sites and bonds respectively. The fractions of sites,
S(R), and bonds, B(R), of sizes smaller than a particular value R are
respectively expressed as indicated in Eq. (1).

S(R) =
∫ R

0

FS(RS) dR;  B(R) =
∫ R

0

FB(RB) dR (1)

Pore networks possess a very special property: the size of a site
should be always larger than (or at least equal to) the size of any
one of its delimiting bonds. This Construction Principle (CP) is of the
upmost importance for the case of highly overlapped FS(RS), FB(RB)
twofold structures, so that the elements are not free to distribute
fully at random. Two  self-consistency laws guarantee the fulfill-
ment of the CP.  The first law states that the proportion of bonds
must be sufficiently large as to link all the sites corresponding to a
given size distribution (Eq. (2)).

First law:B(R) � S(R) ∀R (2)

A second law is still necessary since when there exists an overlap
between the site and bond size distributions topological correla-
tions arise. Thus, the events of finding a site of size RS ∈ (RS, RS + dRS)
together with a size RB ∈ (RB, RB + dRB) for a given one of its C bonds
are not independent. In this case, the joint probability of such an
event is estimated from Eq. (3).

F(RS, RB) = FS(RS)FB(RB)�(RS, RB) dRS dRB (3)

An expression of the second law can be induced from the last
expression as stated in Eq. (4).

Second law:�(RS, RB) = 0, ∀RS < RB (4)

Here, the correlation function �(RS, RB) incorporates all the
information about the site-bond assignment that will arise after
constructing the pore network. For the simplest of cases, called the
Self Consistent situation, sites and bonds are assigned to each other
in the most random way  as allowed by the CP, then, �(RS, RB) attains
the following form:

�(RS, RB) =
exp

(
−

∫ S(RS)
S(RB)

dS
B−S

)
B(RS) − S(RS)

=
exp

(
−

∫ B(RS)
B(RB)

dB
B−S

)
B(RB) − S(RB)

(5)

�(RS, RB) is a correlation function that is a measure of how much
the sizes of a site and one of its connected bonds are related to.
When the overlapping � is null between FS(RS) and FB(RB) this
means that it is perfectly allowed to connect any bond chosen at
random from FB(RB) to any site chosen also at random from FS(RS).

If we denote by � the overlapping area between the site and
bond probability density functions, as shown in Fig. 1 for the case
of uniform distributions, � involves the following properties: (i)
��→0(RS, RB) = 1, ∀RS, RB; this means that sites and bonds are dis-
tributed completely at random, and (ii) ��→1(RS, RB) ∝ ı(RS − RB);
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