
Please cite this article in press as: R. Al-Ali, et al., Workflow optimization of performance and quality of service for bioinformatics
application in high performance computing, J. Comput. Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.03.005

ARTICLE IN PRESSG Model
JOCS-468; No. of Pages 8

Journal of Computational Science xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Workflow optimization of performance and quality of service for
bioinformatics application in high performance computing

Rashid Al-Ali, Nagarajan Kathiresan ∗, Mohammed El Anbari, Eric R. Schendel,
Tariq Abu Zaid
Biomedical Informatics Research Division, Sidra Medical and Research Center, Doha 26999, Qatar

a r t i c l e i n f o

Article history:
Received 14 July 2015
Received in revised form 21 February 2016
Accepted 4 March 2016
Available online xxx

Keywords:
High performance computing
BWA-MEM algorithm
Quality of service
Next generation sequencing
Scalability
Application performance and parallel
efficiency

a b s t r a c t

Nowadays, High Performance Computing (HPC) systems commonly used in bioinformatics, such as
genome sequencing, incorporate multi-processor architectures. Typically, most bioinformatics applica-
tions are multi-threaded and dominated by memory-intensive operations, which are not designed to take
full advantage of these HPC capabilities. Therefore, the application end-user is responsible for optimizing
the application performance and improving scalability with various performance engineering concepts.
Additionally, most of the HPC systems are operated in a multi-user (or multi-job) environment; thus,
Quality of Service (QoS) methods are essential for balancing between application performance, scal-
ability and system utilization. We propose a QoS workflow that optimizes the balancing ratio between
parallel efficiency and system utilization. Accordingly, our proposed optimization workflow will advise
the end user of a selection criteria to apply toward resources and options for a given application and
HPC system architecture. For example, the BWA-MEM algorithm is a popular and modern algorithm for
aligning human genome sequences. We conducted various case studies on BWA-MEM using our opti-
mization workflow, and as a result compared to a state-of-the-art baseline, the application performance
is improved up to 67%, scalability extended up to 200%, parallel efficiency improved up to 39% and overall
system utilization increased up to 38%.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. High performance computing for bioinformatics

Due to various advancements in next-generation sequencing
technologies (e.g. Illumina, SOLiD), larger volumes of genome data
are being produced every year at a lower cost [1]. New functional
variants are being discovered due to this ever-growing availability
of genome data [2]. However, the analysis applications required
for these discoveries typically are performance limited due to
their compute and memory-intensive operations [3]. This paper
addresses these challenges by optimizing genome alignment appli-
cations that are commonly hindered when using traditional High
Performance Computing (HPC) systems. To overcome the tradi-
tional system limitations, HPC systems are becoming popular in
bioinformatics for providing faster genome alignment by utilizing
high-throughput and parallel-processing techniques [4,5], referred
as “HPC for Bioinformatics” [6]. Thus, large-scale genome anal-
ysis can be parallelized to achieve empirically faster results by

∗ Corresponding author.
E-mail address: nkathiresan@sidra.org (N. Kathiresan).

using HPC architectures, but those gains still have much room for
improvement.

Nowadays, multi-core HPC systems used in genome sequenc-
ing still have no optimal choice of workflows based on application
characteristics, in terms of accuracy, performance and optimal
selection of computing resources. Generally, the application per-
formance is dependent on various factors like complexity of the
algorithm, application design, data distribution methods, commu-
nication cost, workflow dependency conditions, software stack (e.g.
compilers, Message passing Interface (MPI)/Thread libraries) and
hardware limitations [7]. To achieve the optimal performance of
any application, it is necessary to understand the application char-
acteristics and the performance bottlenecks.

Most bioinformatics applications are written in multi-threaded
programming models that do not scale well in the modern multi-
core HPC systems [3,8]. For example, when a modern GATK
Haplotype caller application [9] is executed on a 32-cores HPC
system with core steps of 2, 4, 8, 16 and 32, the performance
improvement was expected as execution time keep reducing with
the increased number of cores. However, when beyond 8 cores, the
performance was not improving in relation. Therefore, the optimal
computing resources should be selected based on the scalability

http://dx.doi.org/10.1016/j.jocs.2016.03.005
1877-7503/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).

dx.doi.org/10.1016/j.jocs.2016.03.005
dx.doi.org/10.1016/j.jocs.2016.03.005
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:nkathiresan@sidra.org
dx.doi.org/10.1016/j.jocs.2016.03.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite this article in press as: R. Al-Ali, et al., Workflow optimization of performance and quality of service for bioinformatics
application in high performance computing, J. Comput. Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.03.005

ARTICLE IN PRESSG Model
JOCS-468; No. of Pages 8

2 R. Al-Ali et al. / Journal of Computational Science xxx (2016) xxx–xxx

limitations to achieve the better performance. Alternatively, the
utilization of the HPC system is very poor (about 25% of resource
utilization) for the above GATK Haplotype caller workload. In this
case, it is necessary to improve the system utilization by concur-
rently submitting more similar workloads within the HPC system.
We conducted various case studies of different ways of paralleliza-
tion and their performance impacts are summarized in [8]. As of
now, tools are unavailable to balance between application perfor-
mance, scalability and system utilization and hence we introduced
the Quality of Service (QoS) factor, which uses an effective ratio
between parallel efficiency and system utilization. We designed
this QoS as an optimization workflow to provide the best perfor-
mance and linear scalability with optimal set of resources.

2. Literature review

In the last few years, hash table based algorithms [10] (e.g.
BLAST, SOAP, SeqMap, etc.) and prefix/suffix trees based algo-
rithms (e.g. FM-Index, BWA-MEM, BWT-SW) are commonly used in
genome mapping in bioinformatics research [1]. Burrows-Wheeler
Aligner (BWA) is the most popular genome mapping software
widely used in human genomic sequencing [11–13]. The BWA-
backtrack, BWA-SW and BWA-MEM are three different algorithm
versions of BWA. The BWA-SW and BWA-MEM algorithms are sup-
ported for long-reads (70 bp–1 Mbp) human genome sequences.
Unlike the other algorithms, the BWA-MEM provides fast and accu-
rate alignment for sequence reads and support for long-query and
split-alignment in the human genome sequencing [14].

BWA-MEM, BWA-BT, Bowtie2, SMALT and MOSAIC are some of
the widely used aligner tools. The aligned reads in BWA-MEM and
SMALT are greater than 99%, where the execution time of SMALT
is 3 times slower than BWA-MEM. The BWA-MEM and Bowtie2
execution times are relatively comparable to each other but, the
Bowtie2 aligned reads are relatively good (98.27%) compared to
BWA-MEM (99.10%) [15].

A new MICA aligner is optimized to take advantage of Intel’s
Many Integrated Core Architecture (MIC), which is 4.9 times faster
in execution time compared to the BWA-MEM algorithm [16]. The
Regional Hashing-based Alignment Tool (rHAT) produces accurate
aligned reads, correctly aligned bases and excellent execution time
[17]. In this paper, we compared the rHAT algorithm, even though
it uses Hash-Indexing, in order to understand the computational
limitations of the BWA-MEM. Overall, the new implementations
of aligners, MICA and rHAT, are compared to BWA-MEM [16,17].
The aligned reads and aligned bases are comparatively similar to
each other, but the BWA-MEM algorithm failed to produce better
execution time due to CPU limitations. Hence, we are optimizing
the BWA-MEM algorithm using “data-parallel and concurrent par-
allelization” [3].

The implementations [15–17] discussed prior are focused in
reducing execution time and not the optimal selection of the com-
putational resources. The utilization of the resources is equally
important in a multi-user environment, and the performance is not
always ideal when all the computing resources are utilized [8]. To
address these challenges, we proposed an optimal workflow for
bioinformatics applications that will give a better suggestion to
balance between application performance, scalability and system
utilization, referred to as “best QoS”.

3. Workflow optimization for bioinformatics applications

We present a systematic sequence of approaches called “work-
flow optimization” for the bioinformatics applications on the HPC
system. The workflow is developed based on experience and var-
ious performance engineering concepts. When the application

source code is available, compiler optimization techniques are
used to improve the application performance [18]. We used 4
sets of compiler optimization flags: default optimization (-O3/-O2
flag), vectorization, Single Instruction Multiple Data (SIMD) based
tunings and architecture aware optimizations (e.g. AVX, AVX2, -
qarch=pwr8). For every change in the compiler flags, a different
versions of application binary is created and run with a subset of
genome data to measure the application execution time, HPC sys-
tem efficiency and resource utilization. The best set of results is
referred as “un-optimized” and it is a “baseline” reference for our
workflow optimization.

The application profile based analysis is used to optimize the
licensed applications because of its pre-compiled binaries. By using
the flat profile (e.g. using GNU profiler and Intel Vtune), the perfor-
mance bottleneck of both types (source code and licensed based) of
applications are analyzed [19]. Based on the flat profile results, the
relationship between application instructions and low-level char-
acterizations (e.g. cache miss, translation lookaside buffer (TLB)
miss, etc.) are studied. Accordingly, the application is tuned (e.g.
parallelize the instruction set, change the order of execution of the
instruction to take benefit of the cached registered entries, etc.)
and optimized to make use of low-level hardware features. Addi-
tionally, the genome data is equally partitioned into independent
chunks and equal to the number of cores in the HPC system. The
optimized binary, which is used as the “baseline” reference, is con-
currently executed with independent chunks of genome data and
then measurements are taken of the application execution time
(last concurrent job completion time), HPC system efficiency and
resource utilization. This set of performance number are referred
as “concurrent parallelization” [3].

Due to the larger volume of genome data, the cache
miss/translation lookaside buffer (TLB) misses are possible in
genome alignment. Hence, the genome data is partitioned into
independent multiple chunks (not necessarily equal to the num-
ber of cores) based on the level of cache misses. The optimized
binary is executed in a multi-threading mode with every indepen-
dent chunk of data. During binary execution, the number selection
of multi-threads is determined for providing the best scalability
factor. Accordingly, the system utilization is calculated. The over-
all execution time is sum of all the execution time of independent
chunks of data processing time and this method is referred as “data-
parallelization”.

Most of the multi-threaded applications are affected by shared
memory contentions. As a result, scalability limitations and poor
system utilization are observed. To address these challenges, “data-
parallel with concurrent parallelization” is introduced [3]. In this
method, optimal number of cores is selected based on the scalability
limitation using the data-parallelization concept. The genome data
is independently partitioned into an optimal number of cores. The
optimal binary is executed with independent partition of data con-
currently across all and multi-threading is used, which is equal to
the number of optimal number of cores. Additionally, hyper thread-
ing (HT) or simultaneous multi-threading (SMT) enabled options
are studied to bring the best performance improvement when the
application is not affected with shared memory contention.

Fig. 1 provides a workflow performance optimization overview
of bioinformatics applications represented by step-by-step
flowchart model. Additionally, we summarized our method of
optimization in the automated scripting (Algorithm 1), which is
described as follows:

Notations and assumptions:

1. The HPC system C = {C1, C2 . . . Cn} has ‘n’ cores.
2. The genome data D = {D1, D2 . . . Dm} can be partitioned into ‘m’

independent chunks.

dx.doi.org/10.1016/j.jocs.2016.03.005

Download English Version:

https://daneshyari.com/en/article/6874541

Download Persian Version:

https://daneshyari.com/article/6874541

Daneshyari.com

https://daneshyari.com/en/article/6874541
https://daneshyari.com/article/6874541
https://daneshyari.com

