
Journal of Computational Science 11 (2015) 91–101

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

A two-scale method using a list of active sub-domains for a fully
parallelized solution of wave equations

Marcus Noacka,b,c,∗

a Kalkulo AS, P.O.Box 134, 1325 Lysaker, Norway
b Simula Research Laboratory, P.O. Box 134, 1325 Lysaker, Norway
c Department of Informatics, University of Oslo, Gaustadalleen 23 B, 0373 Oslo, Norway

a r t i c l e i n f o

Article history:
Received 24 March 2015
Received in revised form
14 September 2015
Accepted 16 October 2015
Available online 20 October 2015

Keywords:
GPU
Wave propagation
Two-scale methods

a b s t r a c t

Wave form modeling is used in a vast number of applications. Therefore, different methods have been
developed that exhibit different strengths and weaknesses in accuracy, stability and computational cost.
The latter remains a problem for most applications. Parallel programming has had a large impact on
wave field modeling since the solution of the wave equation can be divided into independent steps. The
finite difference solution of the wave equation is particularly suitable for GPU acceleration; however,
one problem is the rather limited global memory current GPUs are equipped with. For this reason, most
large-scale applications require multiple GPUs to be employed. This paper proposes a method to optimally
distribute the workload on different GPUs by avoiding devices that are running idle. This is done by using
a list of active sub-domains so that a certain sub-domain is activated only if the amplitude inside the sub-
domain exceeds a given threshold. During the computation, every GPU checks if the sub-domain needs
to be active. If not, the GPU can be assigned to another sub-domain. The method was applied to synthetic
examples to test the accuracy and the efficiency of the method. The results show that the method offers
a more efficient utilization of multi-GPU computer architectures.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Wave propagation plays a central role in many fields such as
physics, environmental research and medical imaging to model
acoustics, solid state physics, seismic imaging and cardiac modeling
[1–5]. Different methods have been proposed for stable and accu-
rate solutions of the wave equation, but the computational costs
remain a problem for most applications [1].

The most commonly used methods to solve the wave equation
can coarsely be divided into finite-element methods [6,7], includ-
ing spectral element methods [8], and explicit and implicit finite
difference methods [9,10]. The finite difference method is espe-
cially suitable for GPU acceleration because of the simple division
into independent operations [11]. The solution in the current time
step depends only on solutions of the previous time steps; hence,
all nodes can be computed in parallel. The numerical solution of
the wave equation is a memory demanding process since desired
frequencies, model sizes and wave velocities lead to a large number
of wavelength in the domain which imposes large grid sizes.

∗ Correspondence to: Kalkulo AS, P.O.Box 134, 1325 Lysaker, Norway.
E-mail address: mcn@simula.no

Two examples should be mentioned here. The first example is
in the field of acoustics [1,2], where the model size rarely exceeds
100 m. Mehra et al. [1] presented the problem of a cathedral, where
the sound velocity and the desire for a large range of frequencies
requires a grid size of 22 × 106 nodes. Seismic imaging represents
the second example, where the model dimensions are often in the
order of a few hundred kilometers [12–15] in lateral and vertical
extension. For minimal wave velocities of 300 m/s and frequencies
of 10 Hz, the final grid size is around 16 × 109 nodes. For stabil-
ity reasons it is not possible to choose the step size freely, which
increases the computational cost further. Current GPUs have a
global memory of 24 gigabytes maximum (K80 Tesla GPU); there-
fore, they can store around 6.4 × 109 single precision floating point
numbers.

Since the resulting array is not the only data that has to be stored
in the global memory of the GPU, the actual possible problem size
is much smaller. Additionally, demands for accuracy and domain
size are growing constantly and will always exceed the available
resources. A solution to the problem is distributing the workload
and data to different GPUs. The traditional approach is to assign
one GPU to one specific sub-domain. For the entire computation,
this assignment is static; therefore, most GPUs remain idle during
the largest period of the computing time (see Fig. 1) [11,14,15].

http://dx.doi.org/10.1016/j.jocs.2015.10.008
1877-7503/© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

dx.doi.org/10.1016/j.jocs.2015.10.008
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2015.10.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mcn@simula.no
dx.doi.org/10.1016/j.jocs.2015.10.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

92 M. Noack / Journal of Computational Science 11 (2015) 91–101

Fig. 1. A snapshot of a propagating wave. The domain is divided into 196 sub-
domains. Only 21 (labeled dark) of 196 sub-domains need to be active to compute
the next time step. Therefore, in the traditional approach 89 percent of the GPU
devices are running idle in the computation of the current time step.

To address this issue, a list of active sub-domains can be used, as
described in the following section.

The idea of considering exclusively the active part of a compu-
tation to save computing resources is not new. Di Gregorio et al.
[16] employed the concept of active and inactive regions for wild-
fire susceptibility mapping (see also [17]). A rectangular bounding
box distinguishes active from non-active regions and only active
regions are computed. The bounding box method is also used in [18]
for flow simulation on GPU computer architectures. Teodoro et al.
[19] proposed a method for an efficient wavefront tracking that
only uses active elements which form the wavefront. The advance-
ments in this case enable an efficient image processing. Zhao et al.
[20] used local grid refinement to restrict the computation to active
regions of interest.

2. A list of active sub-domains

Gillberg et al. [21] introduced a list of active sub-domains for the
simulation of geological folds by solving a static Hamilton-Jacobi
equation. In the proposed method, the idea of Gillberg et al. [21] is
adapted and used for the solution of the wave equation on multi-
ple GPUs. The solution process for static Hamilton-Jacobi equation
is very different from the solution process of the wave equation
and the application of the idea in Gillberg et al. [21] is therefore
neither on domain nor on sub-domain level straightforward. The
main differences are the dimensionality of the problem, the solu-
tion process on sub-domain level, e.g., the required stencil shapes,
and the desired employment of multi-GPU computer architecture.

The solution of a static Hamilton-Jacobi equation in [21] is found
by a fast sweeping method on sub-domain level which sweeps
until convergence to find the viscosity solution. In order to par-
allelize the solution process, a pyramid-shaped stencil is used to
compute nodes of an entire plane independently. Different stencil
shapes require different ghost-node configurations and, therefore,
different communication schemes. Since the solution of the wave
equation is not an iterative process that needs to converge to a
minimum, the activation patterns for sub-domains and the solu-
tion process on sub-domain level are very different in Gillberg et al.
[21] from the method proposed herein. Furthermore, the method
in [21] is not developed to be used on a multi-GPU computer archi-
tecture; it is rather made to solve problems where strongly bent
characteristic curves of the static Hamilton-Jacobi equation occur.

The adaption of the method in Gillberg et al. [21] included
among other things the following: the establishment of an effi-
cient communication between multiple GPUs, the adjustment
of the activation pattern for sub-domains to the wave equation,

implementing a different synchronization process, handling the
fourth dimension and the employment of a different ghost-node
configuration. However, the nomenclature is based on the one in
Gillberg et al. [21] to simplify the comprehension for the reader.

The new proposed method distributes the workload and data
efficiently on different GPUs by activating sub-domains in which
the wave exhibits amplitudes larger than a given threshold and
adding these sub-domains to a list. Only the sub-domains on this
list are distributed over available GPUs. During the computation on
the sub-domain level, each GPU checks if the computed sub-domain
needs to be active and, therefore, locks the domain for computation
if the wave has traveled out of the domain boundaries. Therefore,
the effective problem size can be decreased by orders of magnitude
depending on the problem itself and the computing capacities.

The proposed approach is able to decrease the demands of com-
puting resources for a given desired computational performance
since it avoids idle GPUs. In case of an abundant number of GPUs,
the method allows to increase the number of sub-domains and
hence improves the accuracy of the solution. More sub-domains
also offer a more accurate isolation of active from inactive regions
and, therefore, increase the performance (see Fig. 2).

The method was implemented for the acoustic wave equation
but can simply be adapted to more complicated scenarios. It should
also be mentioned that the main scope of the proposed method are
multi-GPU computer architectures. However, every single GPU can
be divided into independent parts to simulate a GPU cluster. This
duality makes the method applicable on every parallel computer
architecture and was used for all presented experiments. Further-
more, the method was developed for GPU computer architectures
but the used principle leads to a speedup on all kinds of parallel
computer architectures.

The remainder of the paper is organized as follows. The the-
ory section gives an overview of the basic methods and the main
principles of the algorithm, beginning with a summary of the
mathematics and physics of the wave equation, followed by the
description of the implementation. The method was applied to
synthetic examples with different grid sizes.

3. Theory

The goal of the proposed method is to solve the wave equation,
given by

∂2
u(x, t)
∂t2

= c(x)2∇2u(x, t)

u(x, 0) = f (x)

∂u(x, 0)
∂t

= 0,

(1)

where u(x) is a scalar function, c(x) is the wave velocity at point
x and ∇2 is the Laplacian operator, on large grid sizes as efficient
as possible. It has to be said that the proposed method is designed
to solve all kinds of wave equations as efficient as possible. The
acoustic wave equation is chosen here as an example for simplicity.
To solve Eq. (1) with the help of an explicit finite difference scheme,
it is mandatory to derive the finite difference approximation for the
wave equation, given by

ut+1
ijk

= v2
ijkdt2∇2u + 2ut

ijk − ut−1
ijk

. (2)

Note that all nodes in the time step t + 1 are independent of all other
nodes in the same time step. All values depend only on the values of
past time steps; thus, the solution process exhibits abundant par-
allelization. The computed wave field u(x)t+1 in a certain time step
will be the needed wave field u(x)t in the next time step and u(x)t

will be the required u(x)t−1 in the subsequent time step. Therefore,
provided that the computation takes place only on one GPU, only

Download English Version:

https://daneshyari.com/en/article/6874562

Download Persian Version:

https://daneshyari.com/article/6874562

Daneshyari.com

https://daneshyari.com/en/article/6874562
https://daneshyari.com/article/6874562
https://daneshyari.com

