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a  b  s  t  r  a  c  t

This work  explores  a method  for classifying  peaks  appearing  within  a data-intensive  time-series.  We
summarize  a  case  study  from  a clinical  trial aimed  at reducing  secondhand  smoke  exposure  via the
installation  of  air  particle  monitors  in  households.  Proper  orthogonal  decomposition  (POD)  in  conjunction
with  a k-means  clustering  algorithm  assigns  each  data  peak  to one  of two  clusters.  Aversive feedback  from
the  monitors  increased  the  proportion  of  short-duration,  attenuated  peaks  from  38.8%  to  96.6%.  For  each
cluster,  a distribution  of parameters  from  a  physics-based  model  of airborne  particles  is estimated.  Peaks
generated from  these  distributions  are  correctly  identified  by  POD/clustering  with  >60%  accuracy.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Real-time and mobile technology for health delivery is becom-
ing increasingly widespread and has the capacity to fundamentally
alter the nature of the interaction between patients and health
service providers. This technology offers the potential for person-
alized treatments that can be modified in real-time in response to
several variables, namely participants’ varying behaviors, environ-
mental contexts, and unique past history [1]. Capitalizing on this
opportunity is predicated on the accurate identification of these
variables in a variety of dynamic contexts. Our ability to achieve this
is limited by the availability of suitable technology to gauge behav-
ior. In an effort to move towards this eventual future, this study
explored the clustering of behavioral characteristics from inten-
sive time-series data generated via a secondhand smoke exposure
(SHSe) real-time technology intervention.

Project Fresh Air (PFA) is an ongoing randomized intervention
trial aimed at reducing SHSe in the homes of smokers via the

∗ Corresponding author at: Computational Science Research Center, San Diego
State University, San Diego, CA 92182-7720, USA.

E-mail address: vberardi@cbeachsdsu.org (V. Berardi).

installation of Dylos DC1700 air particle quality monitors. Each
study household contains a child as well as an adult who engages
in SHS-generating behavior, typically indoor cigarette smoking.
As described in Ref. [2], the monitors are calibrated to detect
particles with sizes ranging from 0.5 to 2.5 �m,  which is con-
sistent with SHS as well as non-tobacco aerosol sources such as
cooking and incense. One monitor is installed in the main smoking
room and another is placed in the child’s bedroom; measure-
ments from only the main room monitor are included in the
ensuing discussion. Every ten seconds, the monitor collects a mea-
surement of the air particle concentration, which is an average
of the previous 10 measurements collected at one-second inter-
vals. This data is transmitted to a small computer that, in turn,
uploads the data to a website that is accessible to PFA staff in near
real-time. The monitors are fit with devices that deliver aversive
visual and auditory feedback (yellow/red lights and beeps) that are
programmed to engage when air particle concentrations exceed
60 �g/m3; the aversiveness of the feedback increases [3] if the
120 �g/m3 threshold is breached. For each home, the duration of
the trial is broken into two  phases: (1.) Baseline (BL) – a washout
period during which feedback is not activated, designed to allow
for the abatement of participant reactivity to monitor installation
and (2.) Treatment (TX) – the period during which the feedback is
activated.
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To reduce SHSe, the PFA intervention aims to modify particle-
generating behavior, in particular tobacco smoking. The intervals
of the particle time-series data with elevated concentrations, or
peaks, serve as proxy measures of this behavior. As such, we seek
to abstract behavioral features from peaks in the time-series data.
Complicating this task is the lack of information about the identifi-
cation and number of household occupants associated with a given
peak. Additionally, the monitors only detect information about par-
ticle size and not chemical composition so confounding sources
of smoke particles, such as burning food, are likely present. Ulti-
mately, we aim to associate different peaks with distinct behaviors
such as cigarette smoking, food burning, or air venting and to
analyze the patterns of these behaviors over time. The approach
outlined hereafter represents the establishment of the groundwork
on which to accomplish this task.

In Section 2, proper orthogonal decomposition (POD), a blind
signal separation (BSS) technique that can be used to identify
underlying source signals that are functionally associated with peak
characteristics, is described. Section 3 discusses the application of
the methodology in Section 2 to a case study from PFA. A cluster
analysis of POD coefficients that allows characteristically-similar
peaks to be classified together is set forth in Section 4 and the
results of this analysis are summarized in Section 5. Section 6
describes the relationship between peak clusters and parameters
from a physics-based model of airborne particulates, which enables
a physical interpretation of the POD/clustering results. A discussion
of findings ensues in Section 7.

2. Extension of proper orthogonal decomposition to peak
analysis

BSS is defined as the factoring of a mixed source into previously-
unknown, independent components [4]. It has been implemented
in a variety of contexts including the analysis of interstellar
dust [5], neuroprocessing [6], and audio processing [7]. A popu-
lar BSS technique is proper orthogonal decomposition (POD) also
known as Karhunen–Loève decomposition [8], principal compo-
nents analysis [9], singular systems analysis [10], or singular value
decomposition [11]. This procedure transforms a set of observa-
tions to a new coordinate system in which each dimension is
linearly uncorrelated with the others. It is an attractive option
to discriminate between peak characteristics since it provides an
optimal basis to decompose signals and analytical bounds for the
estimate of total “energy” captured by the decomposition [8]. For
this study, POD is used to define a projection (decomposition) into
a lower dimensional space where different types of peaks that rep-
resent similar physical scenarios that triggered elevated particle
counts can be identified via clustering analysis.

Consider a sequence of observations represented by scalar func-
tions u(x, ti), i = 1 . . . M.  Typically ti represents the ith temporal
observation of state variable x. Without loss of generality, the time-
average of the sequence, defined by

u(x) = 〈u(x, ti)〉 = 1
M

M∑
i=1

u(x, ti), (1)

is assumed to be zero (if not, as it is in our case, simply sub-
tract the time-average from all observations). The POD extracts
time-independent orthonormal basis functions, �k(x), and time-
dependent orthonormal amplitude coefficients, ak(ti), such that the
reconstruction

u(x, ti) =
M∑

k=1

ak(ti) �k(x), i = 1, . . .,  M (2)

is optimal in the sense that the average least squares trun-
cation error of the POD reconstruction εm = 〈|u(x, ti) −∑m

k=1ak(ti) �k(x)|2〉 is minimized for any given number m ≤ M
of basis functions over all possible sets of orthogonal functions. 〈 · 〉
denotes an average operation, usually over time; and the functions
�k(x) are called empirical eigenfunctions,  coherent structures,  or POD
modes.

The domains x and t are completely empirical so that there is
flexibility to interpreting them according to the characteristics of
the data. Often times, POD analysis is performed on a state variable
x assessed at various times ti [12]. When extended to time-series
data, the interpretation can change to i instances of a univariate
time-series x, e.g., stock returns for multiple companies over a
specified interval [13]. The procedure can also be performed on
multivariate time-series [14]. Yet another interpretation is singular
spectrum analysis, where a univariate time-series is embedded to
create a multidimensional state variable x, that is observed at time
steps ti [15]. In our case, we are interested in peak events, i.e., the
intervals in the time-series with elevated particle measurements.
We assign u(x, ti) to the indoor particle concentration measure-
ments of the ith peak. Rather than representing a state variable
assessed at some time ti, x is a subset of the data corresponding
to the ith peak. Thus the collection of peaks can be summarized as
the matrix U = [u(x, t1)|u(x, t2)| . . . |u(x, tM)] where the ith column
corresponds to the data from the ith peak event, although the order
of the peaks does not affect the analysis.

It can be shown that the eigenfunctions �k in Eq. (2) are the
eigenvectors of the matrix product (1/M)UUT. A popular tech-
nique for finding these eigenvectors when the resolution of x
is greater than the number of observations is the method of
snapshots developed by Sirovich [16]. First the eigenvectors of
(1/M)UTU, denoted as vk, are found. Then the �k’s are calculated
by � = UV where � = [�1|�2| . . . �M] and V = [v1|v2| . . . vM]. Let ai

represent the reconstruction coefficients associated with the ith
peak. These can be calculated by A = UT�,  where A is the M-by-M
matrix [a1|a2| . . . aM]. Statistically speaking, the eigenvalues �k of
(1/M)UTU represent the variance of the data set in the direction of
the corresponding POD mode �k(x). In physical terms, if u repre-
sents a component of a velocity field, then �k measures the amount
of kinetic energy captured by the respective POD mode, �k(x). In
this sense, the energy measures the contribution of each mode to
the overall dynamics. Thus, the total energy captured in the POD is
defined as the sum of all eigenvalues: E =

∑M
k=1�k, and the relative

energy captured by the kth mode is Ek = �k/E.

3. POD of particle concentration time-series

To demonstrate the application of POD to particle concentra-
tion data, we considered a single household from PFA, HM180. This
home is a single-story, 1 bedroom, 1 bathroom detached house.
The monitor was  placed at a height of 8 feet in the living room of
the home. The household was  enrolled in the study for 95 days,
with the first 31 days in the BL phase and the remainder in the TX
phase. Approximately 750,000 measurements were collected from
the monitor in the main smoking room. As will be discussed in
detail in Section 5.2, HM180 was  chosen based on its reporting of
tobacco smoking events to PFA staff.

When recorded by the Dylos monitor, each particle concentra-
tion measurement is assigned an alarm status variable that controls
the emission of visual and auditory feedback. We  use this variable
to define peak events. An event begins when the alarm status indi-
cates an initial breach of 60 �g/m3; this triggers a yellow light and
the first sound. The peak event does not end until the alarm status
indicates that the concentration has fallen below 40 �g/m3 which
corresponds with the cessation of all visual and auditory feedback.
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