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a  b  s  t  r  a  c  t

The  recently  introduced  divergence-conforming  B-spline  discretizations  allow  the construction  of
smooth  discrete  velocity–pressure  pairs  for viscous  incompressible  flows  that  are  at  the  same  time  inf-
sup stable  and  pointwise  divergence-free.  When  applied  to discretized  Stokes  equations,  these  spaces
generate  a  symmetric  and  indefinite  saddle-point  linear  system.  Krylov  subspace  methods  are  usually
the most  efficient  procedures  to solve  such  systems.  One  of  such  methods,  for  symmetric  systems,  is the
Minimum  Residual  Method  (MINRES).  However,  the  efficiency  and robustness  of  Krylov  subspace  meth-
ods  is closely  tied  to appropriate  preconditioning  strategies.  For  the  discrete  Stokes  system,  in particular,
block-diagonal  strategies  provide  efficient  preconditioners.  In  this  article,  we compare  the  performance
of  block-diagonal  preconditioners  for  several  block  choices.  We  verify  how  the eigenvalue  clustering
promoted  by  the  preconditioning  strategies  affects  MINRES  convergence.  We  also  compare  the  number
of iterations  and wall-clock  timings.  We  conclude  that  among  the  building  blocks  we  tested,  the strat-
egy  with  relaxed  inner  conjugate  gradients  preconditioned  with  incomplete  Cholesky  provided  the  best
results.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The concept of isogeometric analysis (IGA) first appeared in
[1], and since then several papers followed, either exploring their
mathematical theory, for example [2,3], or showing their potential
in engineering applications, to mention some [4–12]. In [13], the
IGA concept is used to discretize vector fields of electromagnetic
problems. For such problems, it is known that the function spaces
satisfy a de Rham diagram at the continuous level, and for a discre-
tization to be successfully applied to them, the finite dimensional
spaces should also satisfy the de Rham diagram at the discrete level.
Exploring one of the main features of spline basis functions, that is
the easy control of the basis polynomial degree and regularity, and
by a suitable choice of B-spline spaces of each component of the
two-dimensional vector field, Buffa et al. [13] introduced an IGA
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discretization satisfying a de Rham diagram. They have shown that
the technique can be viewed as a smooth generalization of Nédélec
elements, and thus good results were reported.

The generalization for three-dimensional vector fields and the
mathematical theory of such discretization appeared in [14]. Their
approach, called Isogeometric Discrete Differential Forms, was
inspired by the theory of finite element exterior calculus of Arnold
et al. [15].

In [16], Buffa et al. introduced three similar vector field discreti-
zations for the Stokes problem. By a proper choice of the polynomial
degrees and the regularity of the components of the discrete veloc-
ity field and the discrete pressure field, these discretizations can
be interpreted as smooth generalizations of Nédélec, Taylor-Hood
and Raviart-Thomas elements. Because of the smoothness of the
basis functions used, the discrete velocity spaces of these elements
are H1-conforming, which make them suitable to discretize the
Stokes system. Furthermore, in the case of the Raviart-Thomas ele-
ment type, Buffa et al. [16] characterize the image of the divergence
operator from the discrete velocity space (with and without bound-
ary conditions) onto the discrete pressure space, guaranteeing this
way a point-wise divergence-free discrete vector field, a condition
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that is generally only satisfied weakly by classical mixed finite
elements.

Following the developments of Buffa et al. [14], Evans and
Hughes [17] further developed the Raviart-Thomas element type
in the context of Hilbert complexes. Indeed, by using the stable
projectors of [14], a divergence-preserving transformation (Piola
transformation) of the velocity field and an integral-preserving
transformation of the pressure field, Evans and Hughes devised a
Stokes complex with a compatible sub-complex that furnishes a
discretization scheme, that is at the same time inf-sup stable and
divergence free. In [17–19], Evans and Hughes applied this discre-
tization scheme to several viscous incompressible flows, and also
started its mathematical theory as well.

The discretization of the Stokes equations by inf-sup stable
mixed elements requires the solution of a symmetric indefinite
linear system, called the (discrete) Stokes system, with a block coef-
ficient matrix of saddle-point type. Several strategies for solving the
Stokes linear system have appeared in the literature [20–23], the
most popular being variants of Uzawa’s method, such as the inexact
Uzawa method, and the Minimum Residual Method (MINRES) [24].
The latter is a member from the family of Krylov subspace methods,
and as such, its robustness and performance is very dependent on
the preconditioning strategy.

For example, MINRES is being used to solve large-scale problems
in science, such as Earth’s mantle convection flows in parallel by
finite elements with octree-based adaptive mesh refinement and
coarsening (AMR/C), demonstrating scalability up to 122,880 cores
[25].

The rest of the article is organized as follows. In Section 2, we
review some isogeometric analysis definitions, in order to setup
the nomenclature for the divergence-conforming discretization.
Section 3 reviews the results of [17] with respect to Stokes flow.
First, we present the discrete velocity–pressure pair on the para-
metric domain, and how it is mapped to general geometries by
means of proper transformations. Also, the inf-sup stability and
the divergence-free property of the divergence-conforming dis-
crete velocity–pressure pair is presented. The next section deals
with the discrete variational problem, and how Nitsche’s method
is used to impose Dirichlet boundary conditions weakly. In Sec-
tion 5, we review the Minimum Residual Method. We  discuss its
convergence properties and how to precondition it. We  also present
the block-diagonal preconditioning strategy introduced by Wathen
and Silvester in [26,27], and the choices we made for the pre-
conditioners blocks. Section 6 describes our numerical results. We
present the results for three examples: two manufactured analyti-
cal solutions for different geometries and the lid-driven cavity flow
benchmark. For the lid-driven problem we analyze the precondi-
tioners performance.

2. Isogeometric notation: spline spaces and the geometrical
mapping

We  recall some spline spaces definition and related notation
to describe the divergence-conforming spaces introduced in [17].
Here, we follow closely [16,14,17].

2.1. Univariate B-splines

To define a univariate B-spline basis we specify the number n of
basis functions wanted, the polynomial degree p of the basis and a
knot vector �.  A knot vector � is a finite nondecreasing sequence
� = {0 = �1, . . .,  �n+p+1 = 1}. The sequence may  have repeated knots,
in this case one says that the knot has multiplicity greater than
one. Introducing the vector � = {�1, . . .,  �m} of knots without

repetitions, also called breakpoints, and the vector {r1, . . .,  rm} of
their corresponding multiplicities, one has that,

� = {�1, . . .,  �1︸  ︷︷  ︸
r1 times

, �2, . . .,  �2︸  ︷︷  ︸
r2 times

, . . .,  �m, . . .,  �m︸  ︷︷  ︸
rm times

}, (1)

with
∑m

i=1ri = n + p + 1.
The B-spline basis functions are p-degree piecewise polyno-

mials on the subdivision {�1, . . .,  �m}. A stable way of generating
them is by using the Cox-de Boor recursion algorithm [28], which
receives as inputs p and �.  Knot multiplicity is an essential ingredi-
ent in spline theory, which controls the basis smoothness. Indeed,
if a breakpoint �j has multiplicity rj, then the basis functions have
at least ˛j : = p − rj continuous derivatives at �j. Hence, the max-
imum multiplicity allowed for �j is rj = p + 1, in this case ˛j = −1
and the basis is discontinuous at �j. We restrict ourselves to open
knot vectors, in this case r1 = rm = p + 1, which implies n ≥ p + 1 and
˛1 = ˛m = −1. The vector  ̨ : = {˛1, . . .,  ˛m} collects the basis regular-
ity. We define  ̨ − 1 = { −1, ˛2 − 1, . . .,  ˛m−1 − 1, − 1}, when ˛j ≥ 0
for 2 ≤ j ≤ m − 1, and |˛| = min  {˛2, . . .,  ˛m−1}.

The set
{

Bp
i

}n

i=1
defines a linearly independent set of functions

with all the good properties wanted for analysis purposes [29]. The
space of B-splines spanned by them is denoted by,

Sp
˛ := span

{
Bp

i

}n

i=1
. (2)

For univariate spline spaces, when p ≥ 1 and ˛j ≥ 0 for
2 ≤ j ≤ m − 1, the derivative of a spline is a spline too, indeed the
derivative is a surjective operator, that is,{

d

dx
u : u ∈ Sp

˛

}
≡ Sp−1

˛−1. (3)

2.2. Bivariate B-splines

Given p1, p2, n1, n2, and the knot vectors �1 and �2, we construct
a univariate B-spline basis in each direction, that is, {Bpd

id,d
}nd

id=1
for

d = 1, 2. The bivariate B-spline basis functions are defined by tensor
products of the univariate ones as

Bp1,p2
i1,i2

:= Bp1
i1,1 ⊗ Bp2

i2,2, i1 = 1, . . .,  n1; i2 = 1, . . .,  n2. (4)

The breakpoints �d = {�1,d, . . .,  �md,d} in each direction d = 1, 2
define a mesh

Mh = {Q = (�i1,1, �i1+1,1)

× (�i2,2, �i2+1,2) : 1 ≤ i1 ≤ m1 − 1, 1 ≤ i2 ≤ m2 − 1}, (5)

called the parametric mesh, on the parametric domain �̂ = (0,  1)2.
The subscript h stands for the global mesh size, and is defined as
h := max

Q∈Mh

hQ , where hQ : = diam(Q). To guarantee theoretical con-

vergence estimates, the mesh Mh should satisfy a shape-regularity
condition [2],

�−1 ≤ hQ,min

hQ
≤ �, ∀Q ∈ Mh, (6)

for constant � > 0, where hQ,min is the length of the smallest edge
of Q. If the same � holds for a sequence of nested refined meshes
{Mh}h≤h0

, this sequence is said to be locally quasi-uniform, which
we assume hereafter.

Using the notation ˛1 = {˛1,1, . . .,  ˛m1,1} and ˛2 =
{˛1,2, . . .,  ˛m2,2} for the regularity vectors in each direction,
the bivariate B-spline space is defined as

Sp1,p2
˛1,˛2

≡ Sp1,p2
˛1,˛2

(Mh) := span
{

Bp1,p2
i1,i2

}n1,n2

i1,i2=1
. (7)

The global regularity of the space is defined as  ̨ : = min  {|˛1|,
|˛2|}.
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