
Journal of Computational Science 11 (2015) 245–257

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

On the decomposition of stochastic cellular automata

Witold Bołta,b,∗, Jan M. Baetensb, Bernard De Baetsb

a Systems Research Institute, Polish Academy of Sciences, Newelska St. 6, 01-447 Warsaw, Poland
b KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, B-9000 Gent, Belgium

a r t i c l e i n f o

Article history:
Received 16 February 2015
Received in revised form 18 August 2015
Accepted 9 September 2015
Available online 24 September 2015

Keywords:
Stochastic cellular automata
Complexity analysis
Continuous cellular automata
Decomposition

a b s t r a c t

In this paper we present two interesting properties of stochastic cellular automata that can be helpful in
analyzing the dynamical behavior of such automata. The first property allows for calculating cell-wise
probability distributions over the state set of a stochastic cellular automaton, i.e. images that show the
average state of each cell during the evolution of the stochastic cellular automaton. The second property
shows that stochastic cellular automata are equivalent to so-called stochastic mixtures of deterministic
cellular automata. Based on this property, any stochastic cellular automaton can be decomposed into a
set of deterministic cellular automata, each of which contributes to the behavior of the stochastic cellular
automaton.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cellular automata (CAs) are often used for constructing models
in a variety of fields of application, including chemistry, biol-
ogy, medicine, physics, ecology and the study of socioeconomic
interactions. In many of these settings, stochastic CAs (SCAs) are
considered due to the stochastic nature of the phenomenon under
study or due to a lack of understanding of the exact rules driv-
ing the phenomenon [1,2]. Therefore, a better understanding of
the dynamics of SCAs is crucial. Only a few methods for dealing
with the analysis of models based on SCAs have been developed. In
many practical applications, especially in cases where the averaged
behavior of the system is of concern, sampling methods, relying on
extensive computer simulations, are sufficient [3–5]. Techniques
built on the mean-field theory can be used to study the long-term
behavior of SCAs [6]. The theory of Markov chains can be applied
to provide analytical tools for analyzing the model’s behavior [7],
although in practice, due to the theoretical and computational com-
plexity of such tools, the application scope is limited.

This paper is devoted to providing effective analytical tools
based on deterministic CAs for the analysis of multi-state SCAs.
Although the theoretical foundations of the presented results are
already (at least partially) known in the literature [7–9], so far the
applications are limited. Therefore, the main aim of this paper is to
provide a complete, formal description of the discussed properties

∗ Corresponding author at: Systems Research Institute, Polish Academy of Sci-
ences, Newelska St. 6, 01-447 Warsaw, Poland.

E-mail address: witold.bolt@hope.art.pl (W. Bołt).

in a form that is suitable for applications and that does not require
a strong mathematical background, as well as to present examples
that can motivate further applications in the domain of systems
modeling. The methods presented here are developed in the con-
text of 1D SCAs on finite lattices, but can be easily generalized to
the case of higher dimensions and infinite spaces.

Two main results are presented in this paper. The first one
involves constructing images that show the cell-wise probability
distribution over the state set, at any time step. The method is based
on associating an SCA with a deterministic, continuous CA (CCA).
The second result shows the equivalence of SCAs and stochastic
mixtures of deterministic CAs. Based on this finding, any SCA can
be decomposed into a finite set of deterministic CAs, each of them
contributing to the behavior of the stochastic system. An effec-
tive method for finding a decomposition is presented. It allows
to uncover the deterministic component in the mixture with the
highest impact on the behavior of the SCA.

This paper is organized as follows. We start with some prelimi-
naries and definitions in Section 2. In Section 3, we introduce the
concept of CCAs and the formalism enabling the analysis of multi-
state CAs. Section 4 contains the definition of multi-state SCAs and
holds the main results of this paper. The paper is concluded with
Section 5, discussing the experimental results that illustrate our
results. A summary is presented in Section 6.

2. Preliminaries

Informally, a CA is a discrete dynamical system in which the
space is subdivided into discrete elements, referred to as cells. At

http://dx.doi.org/10.1016/j.jocs.2015.09.004
1877-7503/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2015.09.004
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2015.09.004&domain=pdf
mailto:witold.bolt@hope.art.pl
dx.doi.org/10.1016/j.jocs.2015.09.004

246 W. Bołt et al. / Journal of Computational Science 11 (2015) 245–257

every consecutive, discrete time step, each cell is assigned one of N
states using a deterministic rule, which depends only on the pre-
vious state of the considered cell and the states of its neighboring
cells [10].

Formally speaking, let the state set S be a finite set of N > 1 ele-
ments. Elements of the set C = {ci | i = 1, . . ., M} will be referred to
as cells. Every cell ci is assigned a state s(ci, t) ∈ S at each time step
t ∈ N, according to a local, deterministic rule. The vector s(· , t) ∈ SM

will be referred to as the configuration, and as the initial configu-
ration when t = 0. The sequence (s(· , 0), s(· , 1), . . .) will be referred
to as the space-time diagram of the CA. For technical reasons, we
impose periodic boundary conditions, but our results do not depend
on this assumption.

The function A : SM → SM satisfying, for every t ∈ N:

s(· , t + 1) = A(s(· , t)), (1)

will be referred to as a global CA rule or simply a CA, if there exists
a radius r ∈ N and a function f : S2 r+1 → S satisfying:

s(ci, t + 1) = f (s(ci−r , t), . . ., s(ci+r , t)), (2)

for every i and t ∈ N. Such a function f will be referred to as a
local rule. Note that a local rule uniquely defines the global rule,
while for a given global rule, multiple local rules exist. Addition-
ally, it is assumed that r � M. The vector (ci−r, ci−r+1, . . ., ci+r−1,
ci+r) will be referred to as the neighborhood of cell ci and R = 2 r + 1
will denote the neighborhood size. For the sake of simplicity,
s(ci−r , . . ., ci+r , t) ∈ SR will denote the state of the neighborhood of
cell ci at time step t, and will be referred to as the neighborhood
configuration of ci at time step t.

3. Continuous CAs

There exist multiple ways of extending the definition of CAs to
cover infinite state sets. Examples of such approaches include cou-
pled map lattices (CMLs) [11] and so-called fuzzy CAs [12–14]. In
this section, we present continuous CAs (CCAs), which can be seen
as a generalization of the ideas presented in [12]. Our formalism is
based on a polynomial representation of discrete CA rules. We start
with formulating the continuous counterparts of binary CAs. After
that we present a generalization to cover multi-state CAs.

3.1. Binary CAs

Binary CAs are widely studied [15,16], because they allow to
evolve complex patterns and exhibit complex behavior despite
their intrinsic simplicity. The state set of such a CA A is S = {0, 1}. We
will now formally define and characterize its local rule f : SR → S.

Let l = (li)
2R

i=1 be a binary vector. We consider a system of equations:

f (si,1, . . ., si,R) = li, (3)

where (si,1, . . ., si,R) is a binary vector such that i = 1 +
∑R−1

j=0 si,R−j 2j .
As can be seen, such a system of equations is uniquely defined by
the vector l. The vector l will be referred to as the lookup table
(LUT) of the local rule f. It is not difficult to check that such a sys-
tem uniquely defines the function f, since it lists all of the possible
input configurations, and maps them to corresponding values by
components of the vector l.

Following [12], we know that the function f can be expressed
as a polynomial, which is of interest for our purposes. In order to
define it, we introduce two auxiliary functions. We start with the
function ind : {1, . . ., 2R} → {1, 2}R. It is defined in such a way that
ind(i)[m] is the m-th digit, incremented by one, read from left to
right, of the binary representation of the integer i − 1, padded with

ones on the left, so that it always has length R. Consequently, it
holds that:

i = 1 +
R∑

m=1

(ind(i)[R − (m − 1)] − 1) 2m−1. (4)

The values of ind(i) for R = 3 and i ∈ {1, . . ., 8} are shown below:

ind(1) = (1, 1, 1), ind(2) = (1, 1, 2), ind(3) = (1, 2, 1),

ind(4) = (1, 2, 2), ind(5) = (2, 1, 1), ind(6) = (2, 1, 2),

ind(7) = (2, 2, 1), ind(8) = (2, 2, 2).

The function ind is related to the binary representation of inte-
gers. In [12] a simpler formulation using the function bin, which
yields the binary representation of an integer, is used. The construc-
tion presented here, although a bit more complicated in the binary
setting, allows for a smoother generalization to the multi-state case.

Using the function ind, we now define the function n : S × N ×
N → S, which for s ∈ S and m, i ∈ N, is given by:

n(s, m, i) =
{

s, if ind(i)[m] = 2,

1 − s, if ind(i)[m] = 1.

Note that we will use vectors of states of the form (s1, . . ., sR) ∈
SR and for simplicity, for any m ∈ {1, . . ., R}, we will write n(sm, i)
instead of n(sm, m, i). Using the functions ind and n, we can write
the polynomial representation of the local rule f as:

f (s1, . . ., sR) =
2R∑
i=1

li

(
R∏

m=1

n(sm, i)

)
. (5)

The following example shows the explicit form of this polyno-
mial for a member of the family of elementary CAs (ECAs).

Example 1 (Elementary CAs). Binary, 1D CAs with neighborhood
radius r = 1 are commonly referred to as ECAs [15]. There are 256
such ECAs. Treating the LUT entries li as digits of an integer written
in base 2, we can enumerate the local rules of ECAs. By conven-
tion, the binary vectors are read in the reverse order, i.e. (li)

8
i=1 is

interpreted as (l8, l7, . . ., l1)2. For example, given the LUT l = (0, 1, 1,
0, 1, 0, 0, 1) of ECA 150, and denoting the Boolean complement as
s = 1 − s, its local rule can be written, according to Eq. (5), as:

f150(s1, s2, s3) = s1 s2 s3 + s1 s2 s3 + s1 s2 s3 + s1 s2 s3. �

Using the above notation, a CCA can be defined analogously to
a binary CA, with two notable differences. Firstly, the state set of a
CCA is the unit interval, i.e. S = [0, 1], and, secondly, the local rule
f : [0, 1]R → [0, 1] is given by Eq. (5) with coefficients li ∈ [0, 1]. We

will refer to such a vector (li)
2R

i=1 as a generalized LUT. It is easy
to check that this definition of a CCA is formally correct. Indeed,
the values of the function f in Eq. (5) are guaranteed to belong to
the unit interval if li ∈ [0, 1] for all i and sm ∈ [0, 1] for all m ∈ {1,
. . ., R}. Note that this construction is directly related to the one
presented in [12], where fuzzy CAs are constructed as polynomials
representing fuzzified logical functions. Following the same line of
reasoning, an alternative polynomial representation for the local
rules of binary CAs is presented in [17], which is consistent with a
logical representation of the local rules.

In order to introduce the formalism that is needed in the multi-
state setting, we present a slightly modified way of representing
binary CAs compared to the one obtained through Eq. (5). Let us
assume that the state set is given by S2 = {(1, 0), (0, 1)} ⊂ R

2. Then
the local rule is a function f : SR

2 → S2 and can be represented as a
vector function f = (f1, f2), where fj : SR

2 → {0, 1}. Note that any s =
(s1, s2) ∈ S2 satisfies s2 = 1 − s1. Similarly, f2 = 1 − f1, so that the local

Download English Version:

https://daneshyari.com/en/article/6874581

Download Persian Version:

https://daneshyari.com/article/6874581

Daneshyari.com

https://daneshyari.com/en/article/6874581
https://daneshyari.com/article/6874581
https://daneshyari.com

