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a  b  s  t  r  a  c  t

Many  multi-scale  systems  can  be  greatly  simplified  by using  successive  coarse-graining  (CG)  for  approx-
imation  of  microscopic  degrees  of  freedom.  As  shown  by  Israeli  and  Goldenfeld  in seminal  papers  [1,2],
the local  CG  procedure  can  be  developed  also  for elementary  cellular  automata  (ECA)  which  represent  a
simplistic  modeling  metaphor.  This  allows  for  extracting  the  large-scale  behavior  of  the  original  systems
without  accounting  for  small-scale  detail  and  studying  predictability  of  emergent  phenomena  in com-
plex  systems.  However,  due  to the  high  computational  complexity  of  the  brute-force  CG algorithm  used
in  [1,2], the  results  obtained  are  very  fragmentary.  They  do  not  allow  to draw  viable  conclusions  about
reducibility  of  ECA  for larger  grain  sizes  than N  =  4  (i.e.  for coarser  resolution  of  coarse-graining).  In  this
paper we  present  a novel  CG  algorithm  of substantially  lower  computational  load.  Thereby,  much  more
cellular  automata  can  be  decided  in  terms  of  their reducibility  and  mutual  transitions.  We  find  out  that
the  number  of  “hard”  – irreducible  –  ECA,  which  have  coarse-grained  representations,  decreases  with
increasing  the  “grain”  size  of  the  approximation  procedure  and  for N  = 7 converges  to a stable  set  of  4
irreducible  inequivalent  ECA:  {30,  45, 106, 154}.  According  to  Wuensche’s  taxonomy  of ECA  this  is the
complete  set  of  strong  chain-rules  representing  maximally  chaotic  automata.  Simultaneously,  it is also
the complete  set  of  strong  surjective  automata,  i.e.  highly  irreversible  automata.  We  show  that  our algo-
rithm can  be  used  both  as  a valuable  tool  for theoretical  investigations  on  cellular  automata  taxonomy
and  as a useful  metaphor  of  coarse-graining  procedures  employed  to more  realistic  modeling  paradigms
such  as the  particle  method.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The current challenges in studying biological systems for which
macroscopic scales (e.g. the tissue scale) are tightly coupled with
microscopic processes (molecular or cellular level), involve devel-
oping of new modeling paradigms. The non-linear interactions
across many spatio-temporal scales make modeling biological sys-
tems both very demanding computationally and unreliable in the
scope of classical modeling paradigms (e.g. [3–5]).

Preferably, we are looking for a unified computational frame-
work, which could be matched to the following spatio-temporal
scales of interest throughout the process of successive coarse-
graining of finer scales. The coarse-graining (CG) can be understood
as a numerical equivalent of some renormalization procedures used
from many years in physics for simplification of formal mathemat-
ical models (e.g. [6]). In terms of computational modeling it can be
defined as an approximation process, which limits the number of
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microscopic degrees of freedom (DOF) and the frequency of their
motion starting from the smallest to the largest scales of interest.
The primary challenge is to develop a CG model that is significantly
easier to simulate but that reproduces the same (or similar) physi-
cal behavior as an underlying microscopic model. This would allow
for extracting the large-scale behavior of the original systems with-
out accounting for small-scale detail and studying predictability of
emergent phenomena in complex systems.

Signal decomposition and signal multiresolution are the good
metaphors of the notions of coarse-graining and multiscaling (e.g.
[7]). Every signal can be decomposed onto its approximations and
details on successive resolution levels by using a set of basis func-
tions with compact support (such as wavelets, RBFs,1 etc.). Finally,
the signal can be represented as the sum of the approximation on a
given resolution level and all the details from finer scales. By cutting
off the least important details, i.e. all of them having the weights
below a certain threshold, the signal can be reconstructed by using

1 RBF – radial basis function.
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the coarsest approximation and only a fraction of the most impor-
tant details. This rises the following question. Does a similar scheme
exist in the context of multiscale systems decomposition?

To find the analogies between signal and multiscale systems
decomposition let us consider elementary 1-D cellular automata
(ECA) as the most simplistic model of computations. In the scope
of this conceptual framework we can try to answer the following
questions. Can be the ECA systems decomposed? Does exist a gen-
eral and efficient coarse-graining procedure for cellular automata?

In this paper we stick to the concept of coarse-graining, which
has been introduced to 1-D cellular automata by Israeli and Gold-
enfeld [1,2]. Thus, in this context, the paper is an extension of the
idea presented in [1,2]. First, we briefly present the idea. Then we
demonstrate the CG algorithm of much lower computational com-
plexity than the original one [1–3]. Then we show that it allows
for coarse graining much broader class of automata on a machine
that could not cope with the same task employing the brute-force
algorithm from [2]. Consequently, we can estimate the number of
CA’s with CG ability for grain sizes N > 2. Finally, in the conclu-
sions, we sketch the analogy between coarse-graining of cellular
automata and more realistic modeling paradigm, namely, the par-
ticle method.

2. Coarse-graining of cellular automata

According to Israeli and Goldenfeld [1,2] and employing the
same notation, let us define the original cellular automata CA as
A = (a(t), ˙A, fA) and its coarse-grained equivalent B = (b(T), ˙B,
fB). The states of A and B are labeled by finite alphabets ˙A and
˙B of sizes |˙A| and |˙B|, respectively. The update rules, defined
as fi : {˙i}� → ˙i, where � stands for the neighborhood size (i.e.
� = 3 for 1-D basic CA) and i ∈ {A, B}, consist of a complete number

Ri = |˙i||˙i |� of CA rules and govern the evolution of lattices of CA
states a(t) and b(T) in discrete times t and T = N · t, respectively. The
projection function P : ˙N

A → ˙B is used to map  the block of N cells
from A (i.e. AN grain supercell) into a single cell of B. This projection
has to satisfy the following CG condition [1,2]:

P · fA · · · · · fA︸  ︷︷  ︸
N

· a = fB · P · a (1)

The expression fA · (· · ·)  means, that we apply the update rules fA
of automata A to every cell in the lattice a(t), while P · (· · ·)  denotes
the CG procedure. Eq. (1) says, that by running N times the cellular
automata A and then coarse-graining it by using P(.), we  obtain the
same configuration as applying P(.) at first (i.e. coarse-graining of A
to B), and then running automata B only once. Eq. (1) has to be satis-
fied for any starting configurations a(0) of A. Israeli and Goldenfeld
[1,2] developed a brute-force procedure for finding coarse-grained
configuration of a given automata A, which can be outlined as fol-
lows.

Let us define a supercell automata:

AN = (aN(t), ˙N
A , fAN )

which operates over blocks of N cells from a(t) lattice. For 1-D
automata with neighborhood of size � = 3 the local function fAN

is then fAN : {˙N}3 → ˙N . We  can compute easily the value of fAN

for some x = (x1 ; x2 ; x3) where xi ∈ {˙N} and i = 1, 2, 3. This could be
done by converting x into 3N-element lattice of automata A, and by
running A exactly N times:

y = fA · · · · · fA︸  ︷︷  ︸
N

· x

Now we can choose the alphabet of coarse-grained automata B,
which fits into the alphabet of AN, i.e.

˙B ⊆ ˙AN

Otherwise, for ˙B ≡ ˙AN mapping function P(.) is injective. There
are no benefits from coarse-graining in that setup as we  do not
reduce the size of the new automatas’ alphabet.

By employing all these definitions, we  can rewrite Eq. (1) as
follows:

fB[P(x1), P(x2), P(x3)] = P(fAN [x1, x2, x3])

We  need to keep in mind, that P(.) is not injective, and thus it is
possible that (P(x′

1); P(x′
2); P(x′

3)) = (P(x1); P(x2); P(x3)) for different
triples of N-element blocks, i.e. (x′

1; x′
2; x′

3) /= (x1; x2; x3). In that case
for those triples we  have:

fB[P(x1), P(x2), P(x3)] = fB[P(x′
1), P(x′

2), P(x′
3)]

Hence, in general:

∀(x, x′ | P(xi) = P(x′
i)) : P(fAN [x1, x2, x3]) = P(fAN [x′

1, x′
2, x′

3]) (2)

which defines the correct CG projection P(.). The CG process elim-
inates degrees of freedom of local processes without loosing the
global features of CA evolution. For example, as shown in Fig. 1a
and b, the rule 165 is the coarse-grained version of the rule 90. In
[2], the authors present the full diagram of elementary rules that
can be coarse-grained into other elementary rules within grain size
N ≤ 4. It is worth to mention that the cellular automata of complex-
ity from class IV (such as the rule 110) can be coarse-grained only
to trivial rules, i.e. 0 and 255.

The mapping function P(.) is responsible for information loss.
Only when ˙B ≡ ˙AN no information is being lost, since P(.) is injec-
tive. For such the alphabet ˙B, the coarse-graining of A is trivial and
it always exists. Therefore, it is reasonable to consider alphabets ˙B

that are much smaller than ˙AN . For example, as shown in Fig. 1c,
by increasing the alphabet ˙A (i.e. assuming that ˙A ⊂ ˙B ⊂ ˙AN )
the finer scale information can be extracted. Summarizing, the main
conclusions from Israeli and Goldenfeld CG approach [1] are as
follows:

1. By applying this CG procedure to the most of ECA, it is possible
to obtain their approximations.

2. Many coarse-grained CA can be predictable or trivial (0, 255
rules).

3. Finer, physically important DOF, can be incorporated to the CG
model by increasing the alphabet |˙B| > |˙A| and extending the
rule set.

In the following section we  present a new algorithm which enables
us to extend the scope of applicability of Israeli and Golden-
feld CG procedure on greater alphabets and supercell sizes. This
would allow to formulate much stronger conclusions about ECAs
reducibility than those presented in [1,2].

3. Fast coarse-graining algorithm

The simple brute-force algorithm for finding projection P(.)
described in [2] is very computationally demanding. We  need to
consider all possible cellular automata for being likely the result
of coarse-graining of A. For each CA we verify all mapping func-
tions P(.) and, finally, for each mapping P(.) we have to process all
possible starting configurations for Nth block version of CA. For a
CA with neighborhood of size �,  alphabet  ̇ and block size N, the
computational complexity of this method is as follows:

O(|˙||˙|N + |˙||˙|� + |˙|N�)
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