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a  b  s  t  r  a  c  t

Both  discrete  and  continuous  quantum  walks  on graphs  are  universal  for quantum  computation.  We
define  and  use  discrete  quantum  walks  on  the  graphene  honeycomb  lattice  to investigate  the  possibility
of  using  graphene  armchair  and  zigzag  nanoribbons  to  implement  quantum  gates.  The  probability  dis-
tribution  of  the quantum  walker  location  represents  the  particle  (electron)  density  distribution  on the
graphene  lattice.  We  use  a universal  set of quantum  gates  as  coins  that  drive  the  quantum  walk and  show
that different  quantum  gates  result  in  distinguishable  particle  distributions  on  the  graphene  lattice.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Quantum walks were initially introduced as quantizations of
classical random walks [1,2]. Quantum walks represent quantum
evolution in continuous spaces, discrete lattices and graphs by the
motion of a quantum walker under the action of unitary operators,
derived from the specific Hamiltonians [2,3]. Quantum walk the-
ory has been developing rapidly and has become a powerful model
for quantum system evolution with direct connections to Feynman
propagators and quantum cellular automata [4–9]. Among others,
quantum walks have been applied to solve decision problems in
terms of quantum walks on decision trees, to model breakdown of
electric field driven systems, to study nanotubules and to develop
new quantum algorithms [10–13].

Quantum walks have been proven to be a universal model for
quantum computation. Continuous quantum walks on graphs can
encode any quantum computation with quantum gates imple-
mented by scattering processes [14,15]. Discrete quantum walks
have been proven to implement the same universal quantum gate
set and thus are able to implement any quantum algorithm [16].
Quantum walks can also be encoded as quantum circuits, which is
also a universal model for quantum computation [17,18].

Although both continuous and discrete quantum walks on
graphs are universal models for quantum computation the authors
of [14–16] do not suggest or explain how a physical quantum
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computing system can be built based on the mathematical graph
structures they propose. In the proposed quantum walk models,
graphs and wires represent computational quantum basis states
and not qubits and the models do not represent a physical quantum
computer architecture. Mapping the quantum walk universal quan-
tum computation model on a physical system is not an easy task, but
if such a mapping can be achieved, the building of programmable
quantum computing systems may  be possible.

Graphene is a sheet of carbon atoms arranged in a honeycomb
lattice. Because of its remarkable electronic properties, it has been
proposed that graphene can serve as a physical platform for imple-
menting quantum gates and circuits [19–20]. The possibility of
implementing quantum dots, spin qubits, valley filters and valley
valves has been studied with encouraging results [21–23].

In this paper, we investigate the possibility of using graphene
nanostructures, such as nanoflakes and nanoribbons, to physically
implement the universal quantum walk model. We  define the dis-
crete quantum walk on the two-dimensional hexagonal graphene
lattice. In this discrete quantum walk, the quantum walker repre-
sents a particle (electron) moving in the lattice and the probability
distribution of the walker location represents the electron density
distribution on the graphene lattice. Instead of the usual Grover
and quantum Fourier transform (QFT) coins, we  use quantum gates
as coins to drive the quantum walk. These coins (i.e. the quantum
gates) represent physical actions of magnetic fields, electric fields
and laser pulses on graphene nanostructures. We  use a universal set
of quantum gates, namely the Hadamard (H) gate, the phase-shift
(P) gate and the controlled-not (CNOT) gate.
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Fig. 1. A graphene nanoflake The honeycomb graphene lattice comprises two  sub-
lattices, indicated by red and blue. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Quantum walks on infinite lines and infinite regular graphs
have been solved analytically [24,25], but it would be very dif-
ficult or even impossible to obtain analytical solutions for the
various shapes of graphene nanostructures, mainly because of the
non-infinite boundaries. Therefore, we develop an algorithm that
simulates the quantum walk on finite hexagonal graphene lat-
tices and compare the various particle distributions on different
graphene nanostructure lattices. We  conclude that these distri-
butions are distinguishable and that it is worthy to further study
graphene as a physical quantum computing platform, using both
theoretical and experimental methods.

2. Definition of the quantum walk on the graphene lattice

Graphene lattice is not a Bravais lattice and its unit cell com-
prises two carbon atoms. The repetition of these atoms form two
sulattices which are shown in Fig. 1. In the graphene nanoflake
shown in this figure, the atoms belonging to different sulattices are
indicated with different colors, red and blue. The distance between
two neighboring atoms is 1.42 Å. Two carbon atoms belonging to

Fig. 3. Motion of the quantum walker and the corresponding quantum coin ampli-
tudes a0, a1, a2 and a3. The indices i and j give the position of the atom in the lattice.
(For interpretation of the references to colour in the text, the reader is referred to
the  web  version of this article.)

different sublattices are not equivalent, because the lattice looks
different from these atom sites.

Fig. 2 shows two  graphene nanoribbons. The shape of the
nanoribbon border determines the carrier velocity in graphene.
Fig. 2a shows a zigzag and Fig. 2b shows an armchair nanoribbon.

Fig. 3 shows two atoms belonging to the two  sublattices, the
blue (i,j) and the red (i,j + 1), and their neighbors. Note that atoms
in the same zigzag line along the x-axis are indicated with the same
j index. We  associate a quantum coin to each atom in the graphene
lattice. The quantum coin state |c〉 spans a Hilbert space, the coin
space Hc, and has four probability amplitudes:

|c〉 =

⎡
⎢⎢⎢⎢⎣

a0

a1

a 2

a 3

⎤
⎥⎥⎥⎥⎦

(1)

These four amplitudes are associated with the direction of motion
of the quantum walker (particle) from the current atom to each one
of its neighbors, as shown in Fig. 3. Amplitude a3 is the amplitude
associated with the particle staying at the atom where it is currently
located. The atom positions define another basis for the quantum
walk in which the state |i, j〉represents the quantum walker posi-
tioned at the atom (i, j). These states span the position Hilbert space
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Fig. 2. (a) A zigzag graphene nanoribbon. (b) An armchair graphene nanoribbon.
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