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a b s t r a c t

Throughout their life span, plants maintain the ability to generate new organs, such as leaves. This is
normally done in an orderly way by activating limited groups of dormant cells to divide and grow. It is
currently not understood how that process is precisely regulated. We have used the VirtualLeaf frame-
work for plant organ growth modeling to simulate the typical developmental stages of leaves of the model
plant Arabidopsis thaliana. For that purpose the Hamiltonian central to the Monte-Carlo based mechanical
equilibration of VirtualLeaf was modified. A basic two-dimensional model was defined starting from a
rectangular grid with a dynamic phytohormone gradient that spatially instructs the cells in the grow-
ing leaf. Our results demonstrate that such a mechanism can indeed reproduce various spatio-temporal
characteristics of leaf development and provides clues for further model development.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Generally, the ability of plants to generate new organs, such as
leaves persists during their life time by virtue of so called meris-
tems. These structures typically are maintained by a group of slowly
growing and dividing cells that can become activated to start faster
proliferation and expansion [1,2]. Dicotyledons (or dicots) are a
vast group of plant species with a common embryonic layout with
the weed Arabidopsis thaliana arguably being the most important
experimental model plant. In that capacity it is important to under-
stand its growth and development. Typically, various stages or
phases with a distinct profile of cell division and expansion can
be distinguished in the development of its leaves. Although many
molecules have been implicated in the regulation of leaf growth,
there is still no definitive understanding of the mechanism govern-
ing the succession of those stages.

During the last decade or so computational modeling has
become an increasingly important tool to understand complex
processes in biology and in particular in plant physiology [3–5].
Different modeling platforms have been developed to facilitate con-
struction and implementation of spatio-temporal models of plant
development [6–8]. In a recent study Kuchen et al. proposed hypo-
thetical models to explain differences in relative growth rate (strain
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rate) across the leaf blade of early growth stages of the Arabidopsis
leaf (primordium) [9]. Here we make use of a vertex-based tissue
modeling platform to develop an elementary model that can repro-
duce the major stages during Arabidopsis leaf development and at
the same time can approximate quantitative growth characteristics
from experimental data which are colloquially termed ‘kinematics’
[10,11].

2. Computational method

The VirtualLeaf C++ framework for modeling plant organ growth
[8] was used as a starting point. It uses a vertex-based description of
plant tissue with cells represented by polygons consisting of nodes
or vertices connected by edges. The edges represent the cell wall
segments and cell membranes that separate neighboring cells. All
cells are interconnected in the cellular grid or mesh and neighbor-
ing cells remain connected. The inability for cells to slide relative to
each other corresponds to the so called symplastic nature of living
plant tissues.

Importantly, this mesh or cellular grid forms the cradle of a vari-
ety of biochemical processes which are specified in model specific
classes. There the dynamics of chemical processes within the cells,
within the walls and the transport processes between neighboring
cells and between cells at the boundary and the external environ-
ment are described. These processes determine the evolution of the
various biochemical components in the form of ordinary differen-
tial equations. Like in real tissue individual cells are also able to
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increase in size (grow) and undergo division. The rules specifying
growth and division are also described in model specific classes.

A second crucial part of the framework governs the cell mechan-
ics. In accordance with normal plant tissue cells of the mesh are
characterized by an internal pressure or turgor pressure that is
counterbalanced by the tension of the surrounding walls. To find
the equilibrated state for all cells in the tissue we apply a Metropo-
lis algorithm [12]. We look for a mesh geometry that minimizes an
objective function or a generalized energy function or Hamiltonian
H that is defined as follows:

H = �A

∑
i

(
a(i) − AT(i)

a(i)

)2

+ �M

∑
j

(l(j) − LT(j))2,

where indices i and j sum over all cells and polygon edges, respec-
tively. The parameter �A sets the cells’ resistance to compression
or expansion, and parameter �M is a spring constant. AT is the cell’s
target area, and LT the wall element target length. a and l are the
actual cell area and actual wall element length. The first term rep-
resents a turgor pressure potential of the cells whereas the second
term an elastic (spring) potential energy. The first term is a modi-
fication of the original version [8] which scales the turgor pressure
potential according to the cell areas, resulting in similar relative
contributions to the Hamiltonian of cells with different areas. To
find the equilibrium mesh geometry in the Metropolis approach
all nodes are considered for displacement, one at a time in a ran-
dom order. The random displacement vector is determined by two
random numbers for horizontal and vertical displacement, respec-
tively. If the displacement results in a decrease of energy H, then the
displacement is accepted. To avoid getting stuck in a local energy
minimum the displacement is also accepted with a probability
given by the Boltzmann function:

P (�H) = e
−
(

�H
T

)
,

with T a parameter setting the amount of noise.
The Metropolis algorithm is applied iteratively until the overall

energy decrease for a sweep over all nodes remains below a prede-
fined value. After the mechanical equilibration (example in Fig. 1)
the simulation algorithm continues by numerical integration of all
differential equations representing the biochemical processes, but
based on the updated variables (cellular areas for instance have
changed due to the Monte Carlo runs). Moreover, the rules for cell
division and cell growth are also evaluated. This potentially leads
to cell partitioning and an increase in the cells’ target area. The
function that specifies the (relative) increase in target area is cru-
cial since it forces the cells to expand during the next Monte Carlo
runs. As the cell walls are extended too by that process they even-
tually exceed a preset yield threshold. Consequently new nodes
are introduced into that wall which represents the (real) process of
irreversible wall yielding and allows further growth of the tissue in
the next cycles.

Fig. 1. Example of virtual plant tissue before and after mechanical equilibration.

Fig. 2. Starting cell mesh.

3. Model description

The starting grid consisted of 32 square cells (Fig. 2), the top
16 representing the leaf blade and the bottom 16 representing the
petiole. The latter have a fixed position assuming the blade is the
major expanding part. To decrease the duration of the computa-
tions a limited number of starting cells were used with each cell
equivalent to an ensemble of 64 cells. The start of the simulation
was set to correspond to day 4 after sowing of the real Arabidop-
sis seedling and time steps of 4 h were taken until growth ceases
across the leaf blade after roughly 20 days.

We have assumed that one biochemical compound (the mor-
phogen) controls the developmental behavior of the cells. The
morphogen is produced in the petiole cells at a constant rate for
5 days and is continuously degraded (or converted) proportion-
ally to its concentration. The ‘morphogen’ is passively transported
(diffused) throughout the tissue. The diffusion takes place on a
cell-to-cell basis according to the following equation:

dMi

dt
=

∑
j

[
lijD

�cji

�x

]
,

which expresses the change of the number of molecules of the
morphogen M in cell i over time as the sum of the diffusive fluxes
from all neighboring cells j multiplied by the respective wall seg-
ment lengths lij (=lengths of the edges of the cell polygon). For
the diffusion processes a discrete equation for Fick’s law was used
that expresses the diffusive flux as proportional to the diffusion
coefficient D and to the concentration difference of the substance
between cell j and cell i (�cji), and inversely proportional to the
thickness of the wall segment (�x). The complete equation for cell
i, then becomes:

dMi

dt
=

∑
j

[
lijD

�cji

�x

]
+ P − kdMi,

with P = 0 for cells of the blade. The cellular concentration of M
determines the behavior of the individual cells. If a cell exceeds a
specific threshold value and at the same time has reached a mini-
mum size (area) the cell is instructed to divide. A different (lower)
threshold value needs to be exceeded to drive a certain relative
increase in the target area of that cell. These values are listed in
Table 1.
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